Preliminary contamination investigation

Proposed residential subdivision of Lots 90 and 100 DP750401 168 Shiralee Road, Orange NSW 2800

Ref: R8543c

Date: 16 August 2017

Envirowest Consulting Pty Ltd ABN 18 103 955 246

• 9 Cameron Place, Orange NSW • Tel (02) 6361 4954 • Fax (02) 6360 3960 •

• 6/72 Corporation Avenue, Bathurst NSW • Tel (02) 6334 3312 •

• PO Box 8158, Orange NSW 2800 • Email admin@envirowest.net.au • Web www.envirowest.net.au •

Environmental Geotechnical Asbestos Services

Client: Matthew Savage

PO Box 1174 Orange NSW 2800

Assessor: Claire McQueeney BEnvScMgt

Environmental Scientist

Checked by: Ashleigh Pickering BSc

Environmental Scientist

Authorising Officer: Greg Madafiglio PhD

Senior Environmental Scientist

Interested authorities: Orange City Council

Report number: R8543c

Date: 16 August 2017

Summary report

Address:	168 Shiralee	Road.	Orange NSW

Lot: Lots 90 and 100 **Section**: - **DP**: DP750401

Dates of works:

Main areas of concern

The investigation area is Lot 90 and 100 DP750401, 168 Shiralee Road, Orange NSW. The investigation area comprised approximately 3.8 hectares. An investigation of the site was required to determine the contamination status and suitability for residential land-use.

Notable contaminant concentrations

No elevated levels of heavy metals, hydrocarbons or pesticides were identified. All samples were below the adopted thresholds for residential land-use.

Nature of works carried out

A soil investigation including sampling was undertaken across the site.

Nature and extent of residual contamination

No samples collected contained analytes exceeding the adopted residential land-use threshold.

Risk factors

The potential contamination sources included heavy metals, total recoverable hydrocarbons, BTEXN, and organochlorine and organophosphorus pesticides associated with the former orcharding land-use. The potential exposure pathways included direct (ingestion and absorption). The potential receptors included on-site workers (builders and contractors) and residents, and off-site terrestrial, residential and rural.

Waste removed

Nil

Remediation summary

Nil

Statement of suitability

The investigation area is suitable for the proposed residential land-use.

This is an accurate summary of the report titled: Preliminary Contamination Investigation, proposed residential subdivision of Lots 90 and 100 DP750401, 168 Shiralee Road, Orange NSW 2800

Produced by: Envirowest Consulting Pty Ltd Dated: 16/08/2017 Name: Gregory Madafiglio Certification details: Pending

Contents

page

Ι.	INTRODUCTION	ა
2.	Scope of work Site identification	5
3.	Site identification	5
4.	Site history	5
5.	Site condition and environment	7
6.	Data quality objectives (DQO)	8
7.	Sampling analysis plan and sampling methodology	9
8.	Conceptual site model	12
9.	Quality assurance and quality control	
	Assessment criteria	
	Results and discussion	
	Site characterisation	
13.	Conclusions and recommendations	18
14.	Report limitations and intellectual property	20
15.	References	21
Figu	ıres	22
	endices	

1. Introduction

A twenty-one lot residential subdivision is proposed for Lots 90 and 100 DP750401, 168 Shiralee Road, Orange NSW. The site has an agricultural land-use history of orcharding and grazing of livestock. An investigation of the site is required to determine the soil contamination status and suitability for the proposed residential land-use.

A desktop study and a review of the available history were undertaken of the site. A walkover and site inspection for evidence of contamination from past activities was conducted on 27 and 28 July 2017.

2. Scope of work

Envirowest Consulting Pty Ltd was commissioned by Peter Basha Planning and Development on behalf of Matthew Savage to undertake a preliminary contamination investigation, in accordance with the contaminated land management planning guidelines, from the *Contaminated Land Management Act* 1997 and the *State Environmental Policy No. 55 (SEPP 55)*, of Lots 90 and 100 DP750401, 168 Shiralee Road, Orange NSW. The objective was to identify past potentially contaminating activities, identify potential contamination types, discuss the site condition, provide a preliminary assessment of site contamination and assess the need for further investigation or suitability for residential land-use.

3. Site identification

Address	168 Shiralee Road Orange NSW 2800	
Client	Matthew Savage	
Deposited plans	Lots 90 and 100 DP750401	
Locality map	Figure 1	
Site plan	Figures 2 and 3	
Photographs	Figure 4	
Area	Total investigation area: approximately 3.8 hectares	

4. Site history

4.1 Zoning

Lot 90 DP750401 is zoned R1 – General Residential and R2 - Low Density Residential under the Orange City Council Local Environmental Plan (2012). Lot 100 DP750401 is zoned R2 - Low Density Residential.

4.2 Land-use

The current land-use on-site is grazing of livestock (sheep). The existing dwelling is currently vacant. The site has a historical land-use of orcharding and grazing.

4.3 Summary of council records

None available for review.

4.4 Sources of information

- Site inspection 27 and 28 July 2017 by Envirowest Consulting Pty Ltd
- NSW EPA records of public notices under the CLM Act 1997
- Soil and geological maps
- Spatial information exchange Historical Parish Maps
- Historical aerial photographs
- Orange Local Environmental Plan 2012

4.5 Chronological list of site uses

4.5.1 Historical aerial photographs

Year of photograph	Observations
1954	A small dwelling (heritage cottage) is present on Lot 100, adjacent the boundary with Lot 90. A shed is identified as located north of the existing dwelling. Orcharding is identifiable in the southern section of the site. Pasture is present in the northern section of the site.
1974	The shed identified in 1954 is no longer present. Orcharding is present in the southern section of the site. The heritage cottage on Lot 100 is still present. Additional infrastructure comprising shed and dwelling is present in the western section of Lot 90.
1984	No orchards are present on-site.
1993	No change in infrastructure or land-use has occurred since 1984.
2003	Additional sheds adjacent the dwelling on Lot 90 are present
2006-2016	No change in infrastructure or land-use is identifiable in the 2006-2016 aerial photographs.

4.5.2 Historical parish maps

Review of historical parish maps (1914, 1930, 1948 and 1967) identify J.O.H Nunn as the landholder of Lot 90. Historical parish maps identify the landholder of Lot 100 as W.A Fitzgerald in 1914 and 1930, and as L.A Lane in 1948 and 1967.

4.6 Buildings and infrastructure

Buildings and infrastructure identified on-site at the time of site inspection included;

- Existing heritage cottage
- A number of sheds of varying dimensions including small pump sheds
- Existing dwelling
- Water tanks
- Septic tank disposal area not identified

4.7 Contaminant sources

The historic orcharding land-use is likely to have resulted in application of pesticides in routine management. Pesticides were regularly applied to pome and stone fruits. Fertilisers applied may contain heavy metal contaminants. No bio solids are known to have been applied to the site. The use of machinery in routine orchard management may have resulted in spills of hydrocarbons including petrol, oil or diesel.

4.8 Contaminants of concern

Based on historical activities and site inspection the expected contaminants of concerns are:

- Heavy metals (arsenic, cadmium, chromium, copper, nickel, lead, zinc, mercury)
- Organochlorine and organophosphorus pesticides (OCP and OPP)
- Total recoverable hydrocarbons (TRH C6-C40)
- Benzene, toluene, ethylbenzene, xylenes and naphthalene (BTEXN)

4.9 Relevant complaint history

Nil

4.10 Contaminated site register

The investigation area is not listed on the NSW EPA register of contaminated sites.

4.11 Previous investigations

No previous investigations are known to have been undertaken on the site.

4.12 Neighbouring land-use

North – Rural-residential, residential

South – Rural-residential, rural

East – Rural-residential, Orange rifle range

West - Rural-residential, Towac Racecourse

Historical and present neighbouring land-uses are not expected to impact on the site.

4.13 Integrity assessment

The site history was obtained from a site inspection and history review. The information is consistent with the current site condition and to the best of the assessor's knowledge is accurate.

5. Site condition and environment

5.1 Surface cover

Surface cover within the investigation area comprised pasture grasses, trees and ruderal weeds. Some general refuse including old tyres, timber and corrugated iron sheeting was present around the existing dwelling.

5.2 Topography

The site is located on a mid to upper slope. Aspect over Lot 100 is north west with a slope of 1 to 8%. Aspect over Lot 90 is mostly south east with varying slope of 1 to 5%. Site elevation ranged from 896m to 911m AHD.

5.3 Soils and geology

The site is located within the Spring Hill Soil Landscape (Kovac *et al.* 1990). Krasnozens are the dominant soils within the landscape. Other common soil types comprise yellow podozlic and solodic soils. Natural soils on-site comprise red brown sandy silt to silty clay. Trace gravel was encountered at some sampling locations.

The geological unit is tertiary volcanics derived from Mount Canobolas. The parent rock comprises basalt flows separated by volcanic ash forming layers of clay and slate. The parent material comprises in-situ and colluvial-alluvial materials derived from the parent rock.

5.4 Water

5.4.1 Surface water

The natural flow of surface waters is expected to follow the natural contour of the site and flow north toward Park Street from Lot 100 and south east toward an adjacent property from Lot 90. No permanent or intermittent water bodies are located within 400m of the site.

5.4.2 Groundwater

A search of the NSW Office of Water groundwater database identified three groundwater bores located within the investigation area. The location of the GW020724 and GW029715 was confirmed by site inspection as being in the south eastern corner of the investigation area and the north eastern corner of the house paddock. The bores are licensed for irrigation and general use. Water bearing zones are from 9.1m to 22.9m in basalt, shale, quartz and clay. A further eighteen groundwater bores are located within 500m of the site.

Table 1. NSW Office of Water groundwater bore summary data

Work No.	Drilled depth	Purpose	SWL	Water bearing zones	Geological material
GW029715	31.8m	Irrigation	16.8m	22.9m to 22.9m	Basalt, clay
GW029714	7.6m (hand dug)	Irrigation	-	-	-
GW020724	18.7m	General use	9.1m	9.1m to 17.7m	Shale, gravel

5.5 Evidence of contamination checklist

5.5 Evidence of Contamination Checklist					
Site layout showing industrial processes	None present				
Sewer and service plans	The existing dwelling is serviced by an on-site wastewater system.				
Manufacturing processes	None known				
Underground tanks	None known				
Product spills and loss history	Pesticide mixing or storage of chemicals not identified during site inspection.				
Discharges to land, water and air	None known				
Disposal locations, presence of drums, wastes and fill materials	Corrugated iron sheet, irrigation piping and wire located in north eastern section of house paddock. General refuse was also located adjacent the existing dwelling.				
Soil staining	Nil				
Visible signs of plant stress, bare areas	Nil				
Odours	Nil				
Ruins	Nil				
Other	Nil				

6. Data quality objectives (DQO)

The development of data quality objectives is recommended by NSW EPA to provide a systematic framework for investigations.

6.1 State the problem

A twenty-one lot residential subdivision is proposed for Lots 90 and 100 DP750401, 168 Shiralee Road, Orange NSW. The property has a land-use history of orcharding and grazing of livestock. An investigation of the site is required to determine the soil contamination status and suitability for residential land-use.

6.2 Identify the decision

The proposed land-use is residential and the levels of contaminants should be less than the thresholds listed in Schedule B1 of the NEPC (1999) *Guideline on Investigation Levels for Soil and Groundwater*.

The decision problem is: *Is any contamination present above the adopted thresholds?*

6.3 Identify the inputs decision

The decision inputs provide a framework for the investigation of the site.

The primary inputs for assessing the decision are:

• Preliminary soil investigations collected in accordance with NEPC (1999).

Methods of collecting samples are described in following sections. The soil samples were analysed for potential soil contaminants as listed in the following sections.

The samples were analysed in NATA accredited laboratories using EPA approved methods and levels of detection. Individual levels of each analyte evaluated were compared with the adopted investigation levels to determine suitability for residential land-use.

6.4 Define the boundaries of the study

The area requiring a preliminary contamination investigation Lots 90 and 100 DP750401, 168 Shiralee Road, Orange NSW. The site is approximately 4 hectares.

6.5 Develop a decision rule

The decision rule for remediation is based on the thresholds listed in Schedule B1 of the NEPC (1999) *Guideline on Investigation Levels for Soil and Groundwater.* The guidelines for soil were the residential land-use with access to soil thresholds.

6.6 Specify acceptable limits on the decision errors.

The 95% upper confidence limit of average levels of samples collected are less than the threshold levels.

6.7 Optimize the design for obtaining data

Soil sampling was undertaken as described in the following sections which is based on the EPA sampling guidelines.

Quality assurance and quality control objective and indicators are described in Section 9.

7. Sampling analysis plan and sampling methodology

7.1 Sampling strategy

7.1.1 Sampling design

A systematic sampling pattern was adopted to assess the probable location of contamination across the site. Uniform management practices are expected to have occurred on the site. The site has been historically managed as part of a single unit and is expected to have been treated similarly.

Judgemental samples were collected from 'hotspot' areas around the existing dwellings, sheds and former shed.

7.1.2 Sampling locations

Discrete soil samples were collected on an approximate 25m grid pattern over the investigation area. Four discrete samples were combined to form one composite soil sample. A total of forty-eight discrete soil samples were collected and combined to form 12 composite samples and 48 discrete samples for analysis.

An additional seven discrete samples were collected from around existing dwellings, sheds, and former shed.

The sampling locations are described in Figure 3.

7.1.3 Sampling density

The sampling density can detect a potential hot spot with a radius of 14.75m at a 95% level of confidence. Uniform management practices have been undertaken on the site and the soil sampling and laboratory analysis is considered indicative of the site as a whole. The sampling frequency equal to the minimum sampling density recommended by EPA (1995).

7.1.4 Sampling depth

Any heavy metals or persistent pesticides present are generally immobile and expected to be contained in the 0-100mm soil layer which was the target sampling depth.

7.2 Analytes

The composite soil samples were evaluated for arsenic, cadmium, chromium, copper, lead, nickel, zinc and mercury. The discrete samples collected from across the site were evaluated for organochlorine pesticides (OCP). Discrete soil samples collected from around existing dwellings and former shed were evaluated for heavy metals, organochlorine and organophosphorus pesticides (OCP and OPP), total recoverable hydrocarbons (TRH C6-C40), benzene, toluene, ethylbenzene, xylenes and naphthalene (BTEXN). These analytes were identified as the contaminants of concern possibly present as a result of previous activities (Table 1).

Table 1. Schedule of samples and analyses

Sample ID	Discrete sample ID (Figure 3)	Depth	Analysis undertaken
1	101, 102, 103, 104	0-100mm	Arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), nickel (Ni), zinc (Zn), mercury (Hg)
2	105, 106, 107, 108	0-100mm	As, Cd, Cr, Cu, Pb, Ni, Zn and Hg
3	109, 110, 111, 112	0-100mm	As, Cd, Cr, Cu, Pb, Ni, Zn and Hg
4	113, 114, 115, 116	0-100mm	As, Cd, Cr, Cu, Pb, Ni, Zn and Hg
5	117, 118, 119, 120	0-100mm	As, Cd, Cr, Cu, Pb, Ni, Zn and Hg
6	121, 122, 123, 124	0-100mm	As, Cd, Cr, Cu, Pb, Ni, Zn and Hg
7	125, 126, 127, 128	0-100mm	As, Cd, Cr, Cu, Pb, Ni, Zn and Hg
8	129, 130, 131, 132	0-100mm	As, Cd, Cr, Cu, Pb, Ni, Zn and Hg
9	133, 134, 135, 136	0-100mm	As, Cd, Cr, Cu, Pb, Ni, Zn and Hg
10	137, 138, 139, 140	0-100mm	As, Cd, Cr, Cu, Pb, Ni, Zn and Hg
11	141, 142, 143, 144	0-100mm	As, Cd, Cr, Cu, Pb, Ni, Zn and Hg
12	145, 146, 147, 148	0-100mm	As, Cd, Cr, Cu, Pb, Ni, Zn and Hg
101	101	0-100mm	Organochlorine pesticides (OCP)
102	102	0-100mm	OCP
103	103	0-100mm	OCP
104	104	0-100mm	OCP

Table 1. continued

Sample ID	Discrete sample ID (Figure 3)	Depth	Analysis undertaken
105	105	0-100mm	OCP
106	106	0-100mm	OCP
107	107	0-100mm	OCP
108	108	0-100mm	OCP
109	109	0-100mm	OCP
110	110	0-100mm	OCP
111	111	0-100mm	OCP
112	112	0-100mm	OCP
113	113	0-100mm	OCP
114	114	0-100mm	OCP
115	115	0-100mm	OCP
116	116	0-100mm	OCP
117	117	0-100mm	OCP
118	118	0-100mm	OCP
119	119	0-100mm	OCP
120	120	0-100mm	OCP
121	121	0-100mm	OCP
122	122	0-100mm	OCP
123	123	0-100mm	OCP
124	124	0-100mm	OCP
125	125	0-100mm	OCP
126	126	0-100mm	OCP
127	127	0-100mm	OCP
128	128	0-100mm	OCP
129	129	0-100mm	OCP
130	130	0-100mm	OCP
131	131	0-100mm	OCP
132	132	0-100mm	OCP
133	133	0-100mm	OCP
134	134	0-100mm	OCP
135	135	0-100mm	OCP
136	136	0-100mm	OCP
137	137	0-100mm	OCP
138	138	0-100mm	OCP
139	139	0-100mm	OCP
140	140	0-100mm	OCP
141	141	0-100mm	OCP
142	142	0-100mm	OCP
143	143	0-100mm	OCP
144	144	0-100mm	OCP
145	145	0-100mm	OCP
146	146	0-100mm	OCP
147	147	0-100mm	OCP
148	148	0-100mm	OCP

Table 1. continued

Sample ID	Discrete sample ID (Figure 3)	Depth	Analysis undertaken
201	201	0-100mm	Arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), nickel (Ni), zinc (Zn), mercury (Hg), organochlorine pesticides (OCP), organophosphorus pesticides (OPP), total recoverable hydrocarbons (TRH C6-C40), benzene, toluene, ethylbenzene, xylenes and naphthalene (BTEXN)
202	202	0-100mm	As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN
203	203	0-100mm	As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN
204	204	0-100mm	As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN
205	205	0-100mm	As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN
206	206	0-100mm	As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN
207	207	0-100mm	As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN

7.3 Sampling methods

Soil samples were taken using a stainless steel push-corer. Soil was taken at each individual sampling location below the vegetated and detrital layer.

The soil was transferred to a stainless steel bucket, mixed and transferred to a solvent rinsed glass jar with a Teflon lid. Combining 4 discrete samples made a composite sample for chemical analysis. Discrete soil samples were transferred directly to a solvent rinsed glass jar with a Teflon lid.

Tools were decontaminated between sampling locations to prevent cross contamination by: brushing to remove caked or encrusted material, washing in detergent and tap water, rinsing with clean tap water and allowing to air dry or using a clean towel.

8. Conceptual site model

Potential contamination sources, exposure pathways and receptors are presented below.

Contamination source	Potential exposure pathways	Receptors
Pesticide, hydrocarbon and heavy metal impacted soil from former orcharding land-use	Direct contact (ingestion and absorption)	On-site Residential Site workers
		Off-site Terrestrial environment Rural Residential

9. Quality assurance and quality control

9.1 Sampling design

The sampling program is intended to provide data as to the presence and levels of contaminants.

Discrete soil samples were collected on a systematic pattern across the site on an approximate grid pattern of 25 metres. This sampling density will enable the detection of an area with an elevated concentration on a radius of 14.75 metres with a 95% confidence level.

The number of sampling locations equal to the recommended density in the EPA sampling guidelines and justified due to the uniform management of the site.

9.2 Field

The collection of samples was undertaken in accordance with accepted standard protocols (NEPC 1999). Composite sampling was undertaken for some samples to reduce the cost of chemical analysis. Combining equal amounts from four discrete samples created the composite samples. A composite sample represents the average concentration of the sub-sample. The rules for composite sampling were observed (EPA 1995).

Composite soil samples were analysed for heavy metals. Discrete soil samples taken from across the site were analysed for organochlorine pesticides. Samples taken from 'hotspot' locations around the existing dwellings and infrastructure were analysed for heavy metals, organochlorine and organophosphorus pesticides (OCP and OPP), total recoverable hydrocarbons (TRH C6-C40), benzene, toluene, ethylbenzene, xylenes and naphthalene (BTEXN).

Sampling equipment was decontaminated between each sampling event. The appropriate storage conditions and duration were observed between sampling and analysis. A chain of custody form accompanied the samples to the laboratory (Appendix 2).

A single sampler was used to collect the samples using standard methods. Soil collected was a fresh sample from a stainless steel push-corer. After collection the samples were immediately placed in new glass sampling jars and placed in a cooler.

Three intra-laboratory duplicate samples were collected. The frequency of field duplicates is slightly less than the NEPC (1999) recommendation of 5%. No field blank, rinsate, trip blank or matrix spikes were submitted for analysis. Some samples from all batches did not contain contaminants which confirm the absence of cross contamination during transport and storage.

A field sampling log is presented in Appendix 3.

9.3 Laboratory

Chemical analysis was conducted by SGS Environmental, Sydney, which is NATA accredited for the tests undertaken. The laboratories have quality assurance and quality control programs in place, which include internal replication and analysis of spike samples and recoveries.

Method blanks, matrix duplicates and laboratory control samples were within acceptance criteria. The quality assurance and quality control report is presented together with the laboratory report as Appendix 2.

9.4 Data evaluation

The laboratory quality control report indicates the data variability is within acceptable industry limits. The data is considered representative and usable for the purposes of the investigation. Data quality indicators are presented in Appendix 1.

10. Assessment criteria

The current and proposed land-use of the site is residential. The laboratory results were assessed against the proposed land-use of residential with access to soil. The health and ecological-based investigation

levels of contaminants in the soil for residential sites, for the substances for which criteria are available, are listed in Table 2, as recommended in the NEPC (1999).

The NEPC (1999) also provides health screening levels (HSL) for hydrocarbons in soil. The HSLs have been developed to be protective of human health for soil types, depths below surface and apply to exposure to hydrocarbons through the predominant vapour exposure pathway. The appropriate HSL for the site is listed in Table 2. TRH>16 have physical properties which make the TRH fractions non-volatiles and therefore these TRH fractions are not applicable for vapour intrusion.

Ecological investigation levels (EIL) have been developed for the protection of terrestrial ecosystems for selected metals and organic substances in the soil in the guideline (NEPC 1999). Ecological screening levels (ESL) assess the risk to terrestrial ecosystems from petroleum hydrocarbons in the soil. The EILs and ESLs for commercial land-use are presented in Table 2.

Management limits have been developed to assess petroleum hydrocarbons following evaluation of human health and ecological risks (NEPC 1999). Management units are applicable as screening levels after consideration of relevant ESLs and HSLs. The appropriate management limit for the site is listed in Table 2.

The investigation threshold was adjusted to enable the detection of an individual location being diluted in the composting process (EPA 1995). For composite sampling, the analyte result was divided against the number of discrete samples making up the composite. This is based on a worst-case scenario in which one sample has a high concentration whilst other discrete samples have zero concentration. This is a conservative approach.

Chromium is analysed as total chromium which is the sum of chromium (III) and chromium (VI). Chromium (VI) is a potential contaminant from industrial processes and is not expected to occur in agricultural sites. Chromium III does not have a threshold limit due to low human toxicity. Thus no threshold is set for total chromium on agricultural sites.

Table 2. Investigation levels – Metals and pesticides (NEPC 1999)

	Healt	h investigation level	Ecologica	I Investigation Level
Analyta	(HIL A – residential	tial with access to soil) (EIL –		(EIL - Residential)
Analyte	Discrete Samples	Composite	Discrete samples	Composite
	(mg/kg)	Samples (mg/kg)	(mg/kg)	samples (mg/kg)
Arsenic	100	25	100	25
Cadmium	20	5	-	-
Chromium (total)	_*	_*	400	100
Copper	6,000	1,500	280	70
Lead	300	75	1,100	275
Nickel	400	100	270	67.5
Zinc	7,400	1,850	590	147.5
Mercury	40	10	-	-
OCP	-	-	-	-
DD's	240	-	180	-
OPP	-	-	-	-

^{*} Not applicable due to low human toxicity of Cr(III) and non-industrial site

Table 3. Investigation levels – hydrocarbons (NEPC 1999)

<u> </u>	Ecological investigation level	Health screening level (HSL)	Ecological screening level	Management limits for TRH in fine soil /
Analyte	(EIL) residential	residential, clay soil	(ESL) residential	residential
		0 to <1m		
TRH (C6-C10)	-	50	180	800
TRH (>C10-C16)	-	280	120	1,000
TRH (>C16-C34)	-	-	1,300	3,500
TRH (>C34-C40)	-	-	5,600	10,000
Benzene	-	0.7	65	-
Toluene	-	480	105	-
Ethylbenzene	-	NL	125	-
Xylenes	-	110	45	-
Naphthalene	170	5	-	-

11. Results and discussion

The soil sampling program did not detect elevated levels of the analysed metals, pesticides or hydrocarbons. The levels of all substances analysed in the soil samples were not detected or at environmental background levels and below the residential land-use thresholds (Table 4, 5 and 6).

Table 4. Soil analysis results - hydrocarbons (mg/kg)

Sample I.D	TRH (C6-C10)	TRH (C10-C16)	TRH (C16-C34)	TRH (C34-C40)	Benzene	Toluene	Ethylbenzene	Xylene	Naphthalene
201	ND	ND	ND	ND	ND	ND	ND	ND	ND
202	ND	ND	ND	ND	ND	ND	ND	ND	ND
203	ND	ND	ND	ND	ND	ND	ND	ND	ND
204	ND	ND	ND	ND	ND	ND	ND	ND	ND
205	ND	ND	ND	ND	ND	ND	ND	ND	ND
206	ND	ND	ND	ND	ND	ND	ND	ND	ND
207	ND	ND	ND	ND	ND	ND	ND	ND	ND
Residential land-use the	resholds (N	NEPC 1999))						
HSL A - clay soil 0 to <1m	50	280	-	-	0.7	480	NL	110	5
ESL	180	120	1,300	5,600	65	105	125	45	-
EIL	-	-	-	-	-	-	-	-	170
Management limits for TRH	800	1,000	3,500	10,000	-	-	-	-	-

 $ND-not\ detected,\ HSL-health\ screening\ level,\ EIL-ecological\ investigation\ level,\ ESL-ecological\ screening\ level$

Table 5. Soil analysis results – metals (composite samples) (mg/kg)

Sample ID	Arsenic	Cadmium	Chromium (total)	Copper	Lead	Nickel	Zinc	Mercury
1	4	0.3	36	14	18	8.8	19	ND
2	4	ND	51	16	17	8.3	22	ND
3	4	ND	110	22	16	12	25	ND
4	3	ND	55	18	17	12	32	ND
5	ND	0.3	68	20	13	14	48	ND
6	ND	0.3	83	37	13	16	60	ND
7	ND	0.4	110	40	16	17	78	ND
8	3	0.4	71	54	24	16	91	ND
9	ND	0.3	89	32	14	14	51	ND
10	ND	ND	75	31	20	14	53	ND
11	3	0.3	81	42	14	14	47	ND
12	ND	ND	40	36	12	10	35	ND
Residential land-use th	resholds (NE	PC 1999)						
HIL A								
Discrete	100	20	-*	6,000	300	400	7,400	40
Composite	<i>2</i> 5	5	-*	1,500	75	100	1,850	10
EIL - residential								
Discrete	100	-	-	280	1,100	270	590	-
Composite	25	-	-	70	275	67.5	147.5	-

HIL – health investigation level, EIL – ecological investigation level, ND = not detected at the detection limit, * Not applicable due to low human toxicity of Cr(III) and non-industrial site

Table 6. Soil analysis results – metals and pesticides (discrete samples) (mg/kg)

Sample ID	Arsenic	Cadmium	Chromium (total)	Copper	Lead	Nickel	Zinc	Mercury	OCP (total)	OCP DD's	OPP's
101									ND	ND	<u>_</u>
102	-	-	-	_	-	-	-	-	ND	ND	_
103	-	-	-	-	-	-	-	-	ND	ND	_
104	-	-	_	-	_	-	_	_	ND	ND	_
105	-	-	-	-	-	-	-	-	ND	ND	-
106	-	-	-	-	-	-	-	-	ND	ND	-
107	-	-	-	-	-	-	-	-	ND	ND	-
108	-	-	-	-	-	-	-	-	ND	ND	-
109	-	-	-	-	-	-	-	-	ND	ND	-
110	-	-	-	-	-	-	-	-	ND	ND	-
111	-	-	-	-	-	-	-	-	ND	ND	-
112	-	-	-	-	-	-	-	-	ND	ND	-
113	-	-	-	-	-	-	-	-	ND	ND	-
114	-	-	-	-	-	-	-	-	ND	ND	-
115	-	-	-	-	-	-	-	-	ND	ND	-
116	-	-	-	-	-	-	-	-	ND	ND	-
117	-	-	-	-	-	-	-	-	ND	ND	-
118	-	-	-	-	-	-	-	-	ND	ND	-
119	-	-	-	-	-	-	-	-	ND	ND	-
120	-	-	-	-	-	-	-	-	ND 0.1	ND 0.1	-
121 122	-	-	-	-	-	-	-	-	0.1	0.1	-
	-	-	-	-	-	-	-	-	0.2	0.2	-
123	-	-	-	-	-	-	-	-	0.1	0.1	-
124 125	-	-	-	-	-	-	-	-	0.2	0.2	-
126	-	-	-	-	-	-	-	-	0.3	0.3	-
127	-	-	-	-	-	-	-	-	0.1	0.1	-
127	-	-	-	-	-	-	-	-	0.5	0.5	-
129	_	-	_	_	_	-	-	-	0.3	0.3	_
130	-	-	_	-	_	-	-	-	0.4	0.4	_
131	_	_	_	_	_	_	_	_	0.1	0.1	_
132	_	_	_	_	_	_	_	_	0.4	0.4	_
133	_	_	_	_	_	_	_	_	0.1	0.1	_
134	_	_	_	_	_	_	_	_	0.3	0.3	_
135	-	-	_	_	_	_	_	-	0.5	0.5	_
136	-	-	-	-	-	-	_	-	ND	ND	_
137	-	-	_	-	-	-	-	-	0.1	0.1	_
138	-	-	-	-	-	-	-	-	0.2	0.2	_
139	-	-	-	-	-	-	-	-	ND	ND	-
140	-	-	-	-	-	-	-	-	0.1	0.1	-
141	-	-	-	-	-	-	-	-	0.1	0.1	-
142	-	-	-	-	-	-	-	-	ND	ND	-
143	-	-	-	-	-	-	-	-	0.5	0.5	-
144	-	-	-	-	-	-	-	-	0.4	0.4	-
145	-	-	-	-	-	-	-	-	0.1	0.1	-
146	-	-	-	-	-	-	-	-	0.2	0.2	-
147	-	-	-	-	-	-	-	-	0.1	0.1	-
148	-	-	-	-	-	-	-	-	0.4	0.4	-
201	5	0.8	120	66	66	24	440	0.09	1	1	ND
202	4	0.7	120	120	37	21	200	0.14	1	1	ND
203	3	0.4	73	51	17	16	84	ND	0.3	0.3	ND
204	4	0.4	99	56	27	20	310	ND	0.2	0.2	ND
205	4	0.4	97	26	26	19	100	ND	ND	ND	ND
206	4	0.7	97	34	62	21	430	0.06	ND	ND	ND
207	ND ND	0.3	58	45	30	14	95	ND	0.3	0.3	ND
Residential land-us				/ 000	202	100	7.400			0.40	
HIL A	100	20	_*	6,000	300	400	7,400	40	-	240	-
EIL - residential HIL - health investigation le	100	- cological in	- avectigation	280	1,100	270	590	* Not appli	- icable due t	180	- toxicity of

HIL – health investigation level, EIL – ecological investigation level, ND = not detected at the detection limit, * Not applicable due to low human toxicity of Cr(III) and non-industrial site

12. Site characterisation

12.1 Environmental contamination

Not applicable as no contamination was detected.

12.2 Chemical degradation production

Not applicable as no contamination was detected.

12.3 Exposed population

Not applicable as no contamination was detected.

13. Conclusions and recommendations

13.1 Summary

A twenty-one lot residential subdivision is proposed for Lots 90 and 100 DP750401, 168 Shiralee Road, Orange NSW. An investigation of the site is required to determine the soil contamination status and suitability for the proposed residential land-use.

An inspection of the site was undertaken on 27 and 28 July 2017. The property is located in a rural-residential area south of the Orange CBD and has an approximate area of 3.8 hectares. The property has a land-use history of orcharding and grazing of livestock. There is no evidence of mines, sheep dips or contaminating industrial activities on the site from the review of site history or site walkover.

The contamination status of the site was assessed from a soil sampling and laboratory analysis program. Forty eight discrete soil samples were collected over the investigation area on a systematic grid pattern and combined to form twelve composite samples and forty eight discrete samples. The composite soil samples were analysed for arsenic, cadmium, chromium, copper, lead, nickel, zinc and mercury. The discrete soil samples were analysed for organochlorine pesticides (OCP).

A further seven discrete samples were collected from around the existing dwellings and sheds, and former shed as identified in the 1954 historical aerial photograph. The soil samples were analysed for heavy metals, organochlorine and organophosphorus pesticides, total recoverable hydrocarbons, benzene, toluene, ethylbenzene, xylenes and naphthalene.

The soil sampling program did not detect elevated levels of the analysed metals, pesticides or hydrocarbons. The levels of all substances evaluated were below the NEPC (1999) investigation threshold for residential land-use with access to soil.

The site is suitable for the proposed residential land-use.

13.2 Assumptions in reaching the conclusions

It is assumed the sampling sites are representative of the site. An accurate history has been obtained and typical past farming practices were adopted.

13.3 Extent of uncertainties

The analytical data relate only to the locations sampled. Soil conditions can vary both laterally and vertically and it cannot be excluded that unidentified contaminants may be present. The sampling density was designed to detect a 'hot spot' in the field area within a radius of approximately 14.75 metres and with a 95% level of confidence.

13.4 Suitability for proposed use of the site The site is suitable for residential activities.

13.5 Limitations and constraints on the use of the site

No constraints are recommended.

13.6 Recommendation for further work

Nil

14. Report limitations and intellectual property

This report has been prepared for the use of the client to achieve the objectives given the clients requirements. The level of confidence of the conclusion reached is governed by the scope of the investigation and the availability and quality of existing data. Where limitations or uncertainties are known, they are identified in the report. No liability can be accepted for failure to identify conditions or issues which arise in the future and which could not reasonably have been predicted using the scope of the investigation and the information obtained.

The investigation identifies the actual subsurface conditions only at those points where samples are taken, when they are taken. Data derived through sampling and subsequent laboratory testing is interpreted by geologists, engineers or scientists who then render an opinion about overall subsurface conditions, the nature and extent of the contamination, it's likely impact on the proposed development and appropriate remediation measures. Actual conditions may differ from those inferred to exist, because no professional, no matter how well qualified, and no sub-surface exploration program, no matter how comprehensive, can reveal what is hidden by earth, rock or time. The actual interface between materials may be far more gradual or abrupt than a report indicates. Actual conditions in areas not sampled may differ from predictions. It is thus important to understand the limitations of the investigation and recognise that we are not responsible for these limitations.

This report, including data contained and its findings and conclusions, remains the intellectual property of Envirowest Consulting Pty Ltd. A licence to use the report for the specific purpose identified is granted for the persons identified in that section after full payment for the services involved in preparation of the report. This report should not be used by persons or for purposes other than those stated and should not be reproduced without the permission of Envirowest Consulting Pty Ltd.

15. References

DEC (2006) Contaminated Sites: Guidelines for the NSW Site Auditors Scheme (NSW Department of Environment and Conservation, Chatswood)

Environment Protection Authority (1995) *Contaminated sites: Sampling Design Guidelines* (NSW Environment Protection Authority, Chatswood)

Kovac M, Murphy BW and Lawrie, JW (1990) *Soil Landscapes of the Bathurst 1:250,000 Sheet* (Soil Conservation Service of NSW, Sydney)

NEPC (1999 revised 2013) National Environment Protection (Assessment of Site Contamination) Measure 1999 (National Environment Protection Council Service Corporation, Adelaide)

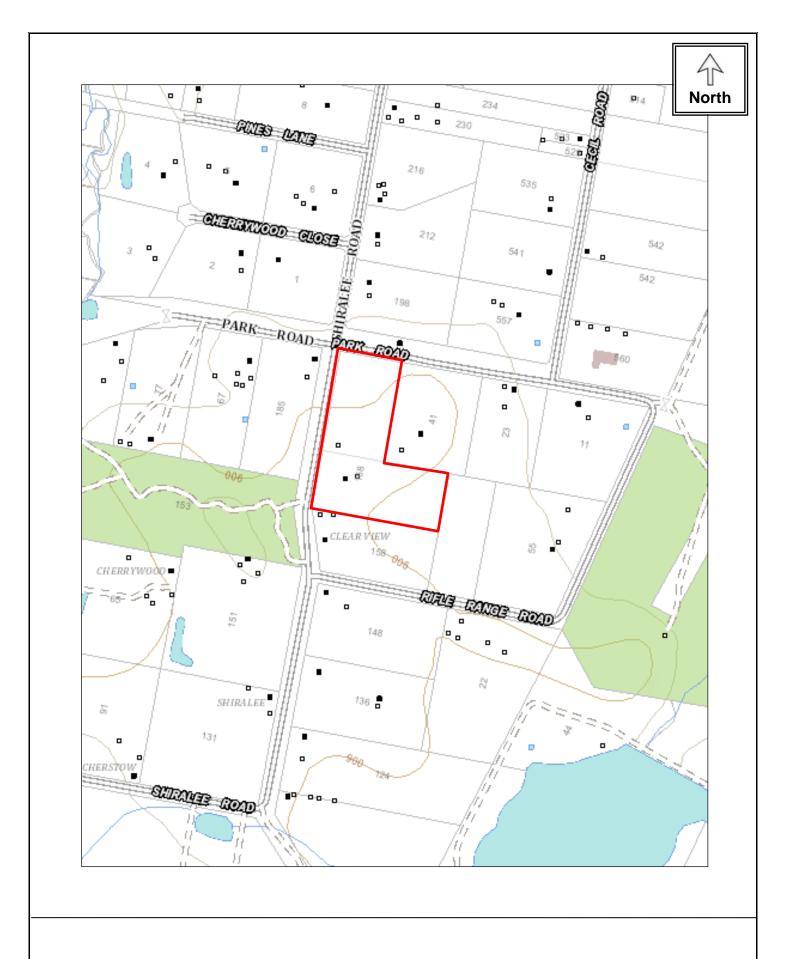
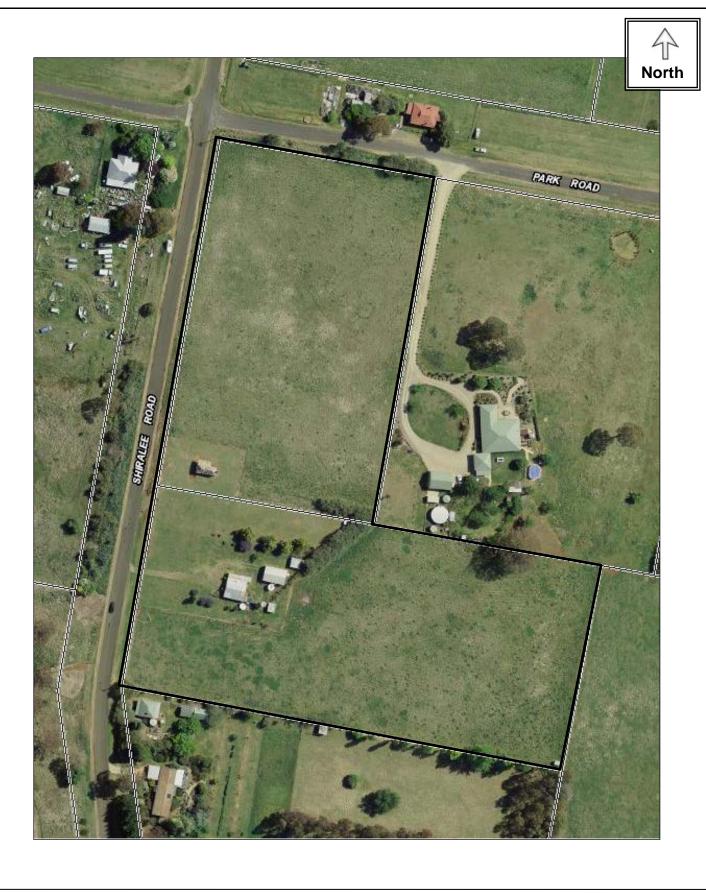

Figures

Figure 1. Locality map

Figure 2. Site plan

Figure 3. Soil sampling locations


Figure 4. Photographs of the site

Investigation area

Figure 1: Locality map						
Lot 90 and 100 DP750401						
168 Shiralee Road, Orange NSW						
Envirowest Consulting Pty Ltd						
Job: R8543c	Drawn by: CM	Date: 24/07/2017				

<u>Legend</u>

Investigation area

Figure 2	2: Aerial photograph (2016)
Lot	90 and 100 DP750401
168 Sh	iralee Road, Orange NSW

Envirowest Consulting Pty Ltd

Job: R8543c Drawn by: CM

Date: 24/07/2017

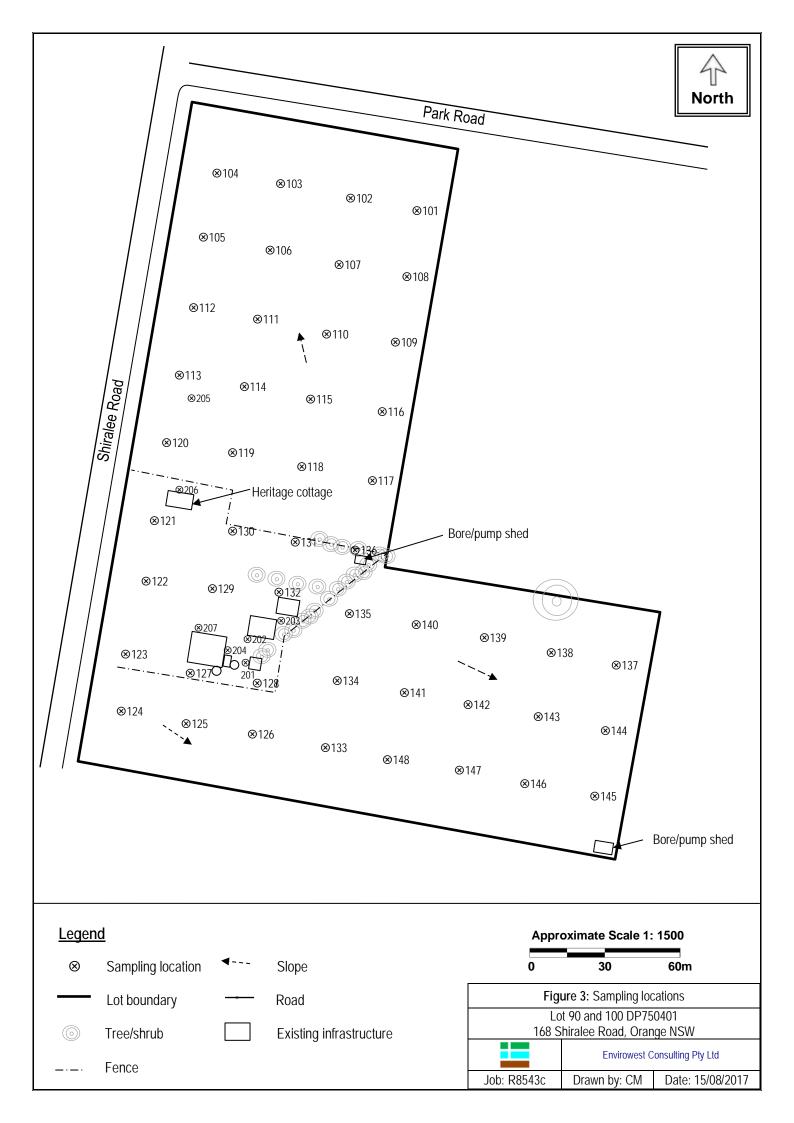


Figure 4. Photographs of site

Looking north over the site

Looking east over the site

Heritage cottage

Corrugated iron, scape wire – house paddock

Looking east toward dwelling and shed

Structure adjacent existing dwelling

Bore – south east corner of site

Existing septic tank

Bore – north east corner of house paddock

Existing shed in house paddock

Appendices

Appendix 1. Sample analysis, quality assurance and quality control (QAQC) report
Appendix 2. Soil analysis results – SGS report number SE168770 and chain of custody form

Appendix 3. Field sampling log

1. Data quality indicators (DQI) requirements

1.1 Completeness

A measure of the amount of usable data for a data collection activity. Greater than 95% of the data must be reliable based on the quality objectives. Where greater than two quality objectives have less reliability than the acceptance criterion the data may be considered with uncertainty.

1.1.1 Field

Consideration	Requirement
Locations and depths to be sampled	Described in the sampling plan. The acceptance criterion is 95% data
·	retrieved compared with proposed. Acceptance criterion is 100% in
	crucial areas.
SOP appropriate and compiled	Described in the sampling plan.
Experienced sampler	Sampler or supervisor
Documentation correct	Sampling log and chain of custody completed

1.1.2 Laboratory

Consideration	Requirement
Samples analysed	Number according to sampling and quality plan
Analytes	Number according to sampling and quality plan
Methods	EPA or other recognised methods with suitable PQL
Sample documentation	Complete including chain of custody and sample description
Sample holding times	Metals 6 months, OCP, PAH, TPH, PCB 14 days

1.2 Comparability

The confidence that data may be considered to be equivalent for each sampling and analytical event. The data must show little or no inconsistencies with results and field observations.

1.2.1 Field

Consideration	Requirement
SOP	Same sampling procedures to be used
Experienced sampler	Sampler or supervisor
Climatic conditions	Described as may influence results
Samples collected	Sample medium, size, preparation, storage, transport

1.2.2 Laboratory

Consideration	Requirement
Analytical methods	Same methods, approved methods
PQL	Same
Same laboratory	Justify if different
Same units	Justify if different

1.3 Representativeness

The confidence (expressed qualitatively) that data are representative of each media present on the site.

1.3.1 Field

Consideration	Requirement
Appropriate media sampled	Sampled according to sampling and quality plan or in accordance with
	the EPA (1995) sampling guidelines.
All media identified	Sampling media identified in the sampling and quality plan. Where
	surface water bodies on the site sampled.

1.3.2 Laboratory

Consideration	Requirement
Samples analysed	Blanks

1.4 Precision

A quantitative measure of the variability (or reproduced of the data). Is measured by standard deviation or relative percent difference (RPD). A RPD analysis is calculated and compared to the practical quantitation limit (PQL) or absolute difference AD.

- Levels greater than 10 times the PQL the RPD is 50%
- Levels between 5 and 10 times the PQL the RPD is 75%
- Levels between 2 and 5 times the PQL the RPD is 100%
- Levels less than 2 times the PQL, the AD is less than 2.5 times the PQL

Data not conforming to the acceptance criterion will be examined for determination of suitability for the purpose of site characterisation.

1.4.1 Field

Consideration	Requirement
Field duplicates	Frequency of 5%, results to be within RPD or discussion required
	indicate the appropriateness of SOP

1.4.2 Laboratory

Consideration	Requirement
Laboratory and inter lab duplicates	Frequency of 5%, results to be within RPD or discussion required. Inter
	laboratory duplicates will be one sample per batch.
Field duplicates	Frequency of 5%, results to be within RPD or discussion required
Laboratory prepared volatile trip spikes	One per sampling batch, results to be within RPD or discussion
	required

1.5 Accuracy

A quantitative measure of the closeness of the reported data to the true value.

1.5.1 Field

Consideration	Requirement	
SOP	Complied	
Inter laboratory duplicates	Frequency of 5%.	
	Analysis criterion	
	60% RPD for levels greater than 10 times the PQL	
	85% RPD for levels between 5 to 10 times the PQL	
	100% RPD at levels between 2 to 5 times the PQL	
	Absolute difference, 3.5 times the PQL where levels are, 2 times PQL	

1.5.2 Laboratory

Recovery data (surrogates, laboratory control samples and matrix spikes) data subject to the following control limits:

- 60 to 140% acceptable data
- 20-60% discussion required, may be considered acceptable
- 10-20% data should considered as estimates
- 10% data should be rejected

Consideration	Requirement
Field blanks	Frequency of 5%, <5 times the PQL, PQL may be adjusted
Rinsate blanks	Frequency of 5%, <5 times the PQL, PQL may be adjusted
Method blanks	Frequency of 5%, <5 times the PQL, PQL may be adjusted
Matrix spikes	Frequency of 5%, results to be within +/-40% or discussion required
Matrix duplicates	Sample injected with a known concentration of contaminants with tested. Frequency
	of 5%, results to be within +/-40% or discussion required
Surrogate spikes	QC monitoring spikes to be added to samples at the extraction process in the
	laboratory where applicable. Surrogates are closely related to the organic target
	analyte and not normally found in the natural environment. Frequency of 5%, results
	to be within +/-40% or discussion required
Laboratory control samples	Externally prepared reference material containing representative analytes under
	investigation. These will be undertaken at one per batch. It is to be within +/-40% or
	discussion required
Laboratory prepared spikes	Frequency of 5%, results to be within +/-40% or discussion required

2. Laboratory analysis summary

One analysis batch was undertaken over the preliminary investigation program. Samples were collected on 27 and 28 July 2017. A total of 67 samples were submitted for analytical testing. The samples were collected in the field by an Environmental Scientist from Environmental Consulting Pty Ltd and placed into laboratory prepared receptacles as recommended in NEPC (1999). The samples preservation and storage was undertaken using standard industry practices (NEPC 1999). A chain of custody form accompanied transport of the samples to the laboratory.

The samples were analysed at the laboratories of SGS Environmental, Alexandria, which is National Association of Testing Authorities (NATA) accredited for the tests undertaken. The analyses undertaken, number of samples tested and methods are presented in the following tables:

Laboratory analysis schedule

Sample I.D	Number of	Duplicate	Analyses	Date	Substrate	Laboratory
	samples			collected		report
1, 2, 3, 4, 5, 6,	12	0	As, Cd, Cr	27/07/2017	Soil	SE168770
7, 8, 9, 10, 11,			(total), Cr(VI) Cu,	28/07/2017		
12			Pb, Ni, Zn, Hg			
101, 102, 103,	48	3	OCP	27/07/2017	Soil	SE168770
104, 105, 106,				28/07/2017		
107, 108, 109						
110, 111, 112						
113, 114, 115						
116, 117, 118						
119, 120, 121						
122, 123, 124						
125, 126, 127						
128, 129, 130						
131, 132, 133						
134, 135, 136						
137, 138, 139						
140, 141, 142						
143, 144, 145						
146, 147, 148						
201, 202, 203,	7	0	As, Cd, Cr	28/07/2017	Soil	SE168770
204, 205, 206,			(total), Cr(VI) Cu,			
207			Pb, Ni, Zn, Hg,			
			OCP, OPP, TRH			
			(C6-C40),			
			BTEXN			

Analytical methods

Analyte	Extraction	Laboratory methods
Metals	USEPA 200.8 Mod	APHA USEPA SW846-6010
Chromium (III)	-	APHA 3500 CR-A&B & 3120 and USEPA SW846-3060A
Chromium (VI)	USEPA SW846-3060A	USEPA SW846-3060A
Mercury	USEPA 200.8 Mod	APHA 3112
TPH(C6-C9)	USPEA SW846-5030A	USPEA SW 846-8260B
TPH(C10-C36), PAH	Tumbler extraction of solids	USEPA SW 846-8270B
PCB	Tumbler extraction of solids	USEPA SW 846-8270B
OC Pesticides	Tumbler extraction of solids	USEPA SW 846-8270B
BTEX	Tumbler extraction of solids	USEPA SW 846-8260B

3. Field quality assurance and quality control

Three intra laboratory duplicates were collected for the analysis batch. The frequency was slightly less than the recommended frequency of 5%. Table A1.1 outlines the samples collected and differences in replicate analyses. Relative differences were deemed to pass if they were within the acceptance limits of +/- 40% for replicate analyses or less than 5 times the limit of reporting (LOR).

Field duplicate frequency

Sample id.	Duplicate	Number	Duplicate	Frequency	Date	Substrate	Laboratory
	type	of		(%)	collected		report
		samples					
1, 2, 3, 4, 5, 6, 7, 8,	Intra-	67	3	4	27/07/2017	Soil	SE168770
9, 10, 11, 12	laboratory				28/07/2017		
101, 102, 103, 104,							
105, 106, 107, 108,							
109, 110, 111, 112							
113, 114, 115, 116,							
117, 118, 119, 120,							
121, 122, 123, 124							
125, 126, 127, 128,							
129, 130, 131, 132,							
133, 134, 135, 136							
137, 138, 139, 140,							
141, 142, 143, 144,							
145, 146, 147, 148							
201, 202, 203, 204,							
205, 206, 207							

Table A1.1. Relative differences for intra laboratory duplicate

Sample ID	123 and DA		23 and DA 138 and DB		148 aı	nd DC
	Relative	Pass/Fail	Relative	Pass/Fail	Relative	Pass/Fail
	difference (%)		difference (%)		difference (%)	
OCP	0	Pass	0	Pass	0	Pass

4. Laboratory quality assurance and quality control

Sample holding times are recommended in NEPC (1999). The time between collection and extraction for all samples was less than the criteria listed below:

Analyte	Maximum holding time
Metals, cyanide	6 months
OCP, TPH, PCB, BTEX, PAH	14 days

The laboratory interpretative reports are presented with individual laboratory report. Assessment is made of holding time, frequency of control samples and quality control samples. No significant outliers exist for the sampling batches. The laboratory report also contains a detailed description of preparation methods and analytical methods.

The results, quality report, interpretative report and chain of custody are presented in the attached appendices. The quality report contains the laboratory duplicates, spikes, laboratory control samples, blanks and where appropriate matrix spike recovery (surrogate).

5. Data quality indicators (DQI) analysis

5.1 Completeness

A measure of the amount of usable data for a data collection activity (total to be greater than 95%).

The data set was found to be complete based on the scope of work. No critical areas of contamination were omitted from the data set.

5.1.1 Field

Consideration	Accepted	Comment
Locations to be sampled	Yes	In accordance with sampling methodology, described in the report.
		Sampling locations described in figures.
Depth to be sampled	Yes	In accordance with sampling methodology
SOP appropriate and compiled	Yes	In accordance with sampling methodology
		Sampled with stainless steel spade into lab prepared containers,
		decontamination between samples, latex gloves worn by sampler
Experienced sampler	Yes	Same soil sampler, environmental scientist
Documentation correct	Yes	Sampling log completed
		Chain of custody completed

5.1.2 Laboratory

Consideration	Accepted	Comment
Samples analysed	Yes	All critical samples analysed in accordance with chain of custody and analysis plan
Analytes	Yes	All analytes in accordance with chain of custody and analysis plan
Methods	Yes	Analysed in NATA accredited laboratory with recognised methods and suitable PQL
Sample documentation	Yes	Completed including chain of custody and sample results and quality results report for each batch
Sample holding times	Yes	Metals less than 6 months. OCP, TPH, PCB, BTEX less than 14 days

5.2 Comparability

The confidence that data may be considered to be equivalent for each sampling and analytical event.

The data sets were found to be acceptable.

5.2.1 Field

Consideration	Accepted	Comment
SOP	Yes	Same sampling procedures used and sampled on one date
Experienced sampler	Yes	Experienced scientist
Climatic conditions	Yes	Described in field sampling log
Samples collected	Yes	Suitable size, storage and transport

5.2.2 Laboratory

Consideration	Accepted	Comment
Analytical methods	Yes	Same methods all samples, in accordance with NEPC(1999) or USEPA
PQL	Yes	Suitable for analytes
Same laboratory	Yes	ALS Environmental is NATA accredited for the test
Same units	Yes	-

5.3 Representativeness

The confidence (expressed qualitatively) that data are representative of each media present on the site.

The data sets were found to be acceptable.

5.3.1 Field

Consideration	Accepted	Comment
Appropriate media sampled	Yes	Sampled according to sampling and quality plan
All media identified	Yes	Soil
		Sampling media identified in the sampling and quality plan

5.3.2 Laboratory

Consideration	Accepted	Comment
Samples analysed	Yes	Undertaken in NATA accredited laboratory. No blanks analysed. Samples in the analysis batch contain analytes below the level of detection. It is considered unlikely that contamination has occurred as a result of transport and handling.

5.4 Precision

A quantitative measure of the variability (or reproduced of the data). The data sets were found to be acceptable.

5.4.1 Field

Consideration	Accepted	Comment
SOP	Yes	Complied
Field duplicates	No	Not collected due to the preliminary nature of the investigation

5.4.2 Laboratory

Consideration	Accepted	Comment
Laboratory and inter lab duplicates	Yes	Frequency of 5%, results to be within +/-40% or discussion required
Field duplicates	Yes	Complied
Laboratory prepared volatile trip	NA	Volatile analytes were not analysed
spikes		

5.5 Accuracy

A quantitative measure of the closeness of the reported data to the true value.

The data sets were found to be acceptable.

5.5.1 Field

Consideration	Accepted	Comment
SOP	Yes	Complied
Field blanks	NA	Frequency of 5%, <5 times the PQL, PQL may be adjusted
Rinsate blanks	NA	Frequency of 5%, <5 times the PQL, PQL may be adjusted

5.5.2 Laboratory

Consideration	Accepted	Comment
Method blanks	Yes	Frequency of 5%, <5 times the PQL, PQL may be adjusted
Matrix spikes	Yes	Frequency of 5%, results to be within +/-40% or discussion required.
Matrix duplicates	Yes	Frequency of 5%, results to be within +/-40% or discussion required.
Surrogate spikes	Yes	Frequency of 5%, results to be within +/-40% or discussion required
Laboratory control samples	Yes	Frequency of 5%, results to be within +/-40% or discussion required
Laboratory prepared spikes	Yes	Frequency of 5%, results to be within +/-40% or discussion required

Three intra laboratory duplicates were collected for the analysis batch. The frequency was slightly less than the recommended frequency of 5%. This is not considered to create significant uncertainty in the analysis results because of the following rationale:

- The fieldwork methods used for soil sampling were consistent throughout the project with all in situ samples collected from material which had not been subject to exposure.
- The fieldwork was completed within a short time period and consistent methods were used for soil sampling.
- Soil samples were placed in insulated cooled containers as quickly as possible, with the containers filled to minimize headspace. The sample containers were sealed immediately after the sample was collected and chilled in an esky containing ice.
- The samples were stored in a refrigerator and transported with ice bricks to ensure preservation during transport and storage.
- The samples were placed in single use jars using clean sampling tools and disposable gloves from material not in contact with other samples. This reduces the likelihood of cross contamination.
- Samples in the analysis batches contained analytes below the level of detection. It is considered unlikely that contamination has occurred as a result of transport and handling.
- The target contaminates are not volatile

6. Conclusion

All media appropriate to the objectives of this investigation have been adequately analysed and no area of significant uncertainty exist. It is concluded the data is usable for the purposes of the investigation.

Appendix 3. Field sampling log

Sampling log

Client Matthew Savage

Contact -

Job number 8543

Lot 90 and 100 DP750401

Location 681 Shiralee Road, Orange NSW

Date 26 and 27 July 2017 Investigator(s) Claire McQueeney

Weather conditions Sunny, cold

Sample ID	Matrix	Analysis undertaken	Observations/comments
1	Soil	Arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), nickel (Ni), zinc (Zn), mercury (Hq)	Composite of 101, 102, 103, 104
2	Soil	As, Cd, Cr, Cu, Pb, Ni, Zn and Hg	Composite of 105, 106, 107, 108
3	Soil	As, Cd, Cr, Cu, Pb, Ni, Zn and Hg	Composite of 109, 110, 111, 112
4	Soil	As, Cd, Cr, Cu, Pb, Ni, Zn and Hg	Composite of 113, 114, 115, 116
5	Soil	As, Cd, Cr, Cu, Pb, Ni, Zn and Hg	Composite of 117, 118, 119, 120
6	Soil	As, Cd, Cr, Cu, Pb, Ni, Zn and Hg	Composite of 121, 122, 123, 124
7	Soil	As, Cd, Cr, Cu, Pb, Ni, Zn and Hg	Composite of 125, 126, 127, 128
8	Soil	As, Cd, Cr, Cu, Pb, Ni, Zn and Hg	Composite of 129, 130, 131, 132
9	Soil	As, Cd, Cr, Cu, Pb, Ni, Zn and Hg	Composite of 133, 134, 135, 136
10	Soil	As, Cd, Cr, Cu, Pb, Ni, Zn and Hg	Composite of 137, 138, 139, 140
11	Soil	As, Cd, Cr, Cu, Pb, Ni, Zn and Hg	Composite of 141, 142, 143, 144
12	Soil	As, Cd, Cr, Cu, Pb, Ni, Zn and Hg	Composite of 145, 146, 147, 148
101	Soil	Organochlorine pesticides (OCP)	Collected from Lot 100
102	Soil	OCP	Collected from Lot 100
103	Soil	OCP	Collected from Lot 100
104	Soil	OCP	Collected from Lot 100
105	Soil	OCP	Collected from Lot 100
106	Soil	OCP	Collected from Lot 100
107	Soil	OCP	Collected from Lot 100
108	Soil	OCP	Collected from Lot 100
109	Soil	OCP	Collected from Lot 100
110	Soil	OCP	Collected from Lot 100
111	Soil	OCP	Collected from Lot 100
112	Soil	OCP	Collected from Lot 100
113	Soil	OCP	Collected from Lot 100
114	Soil	OCP	Collected from Lot 100
115	Soil	OCP	Collected from Lot 100
116	Soil	OCP	Collected from Lot 100
117	Soil	OCP	Collected from Lot 100
118	Soil	OCP	Collected from Lot 100
119	Soil	OCP	Collected from Lot 100
120	Soil	OCP	Collected from Lot 100

221 Soil OCP				
123	121	Soil	OCP	Collected from Lot 90
124	122	Soil	OCP	Collected from Lot 90
125	123	Soil	OCP	Collected from Lot 90
126	124	Soil	OCP	Collected from Lot 90
127	125	Soil	OCP	Collected from Lot 90
128	126	Soil	OCP	Collected from Lot 90
129	127	Soil	OCP	Collected from Lot 90
130	128	Soil	OCP	Collected from Lot 90
131	129	Soil	OCP	Collected from Lot 90
132	130	Soil	OCP	Collected from Lot 90
133	131	Soil	OCP	Collected from Lot 90
134	132	Soil	OCP	Collected from Lot 90
135	133	Soil	OCP	Collected from Lot 90
136	134	Soil	OCP	Collected from Lot 90
137	135	Soil	OCP	Collected from Lot 90
138	136	Soil	OCP	Collected from Lot 90
139	137	Soil	OCP	Collected from Lot 90
141 Soil OCP Collected from Lot 90 142 Soil OCP Collected from Lot 90 143 Soil OCP Collected from Lot 90 144 Soil OCP Collected from Lot 90 144 Soil OCP Collected from Lot 90 145 Soil OCP Collected from Lot 90 146 Soil OCP Collected from Lot 90 147 Soil OCP Collected from Lot 90 148 Soil OCP Collected from Lot 90 148 Soil OCP Collected from Lot 90 201 Soil Arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), nickel (Ni), zinc (Zn), mercury (Hg), organophosphorus pesticides (OPP), total recoverable hydrocarbons (TRH C6-C40), benzene, toluene, ethylbenzene, xylenes and naphthalene (BTEXN) 202 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN 203 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN 205 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN 206 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN 207 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN 207 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN 207 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN 208 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN 209 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN 209 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN 209 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN 209 North of dwelling	138	Soil	OCP	Collected from Lot 90
141	139	Soil	OCP	Collected from Lot 90
142 Soil OCP Collected from Lot 90 143 Soil OCP Collected from Lot 90 144 Soil OCP Collected from Lot 90 145 Soil OCP Collected from Lot 90 146 Soil OCP Collected from Lot 90 147 Soil OCP Collected from Lot 90 148 Soil OCP Collected from Lot 90 148 Soil OCP Collected from Lot 90 201 Soil Arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), nickel (Ni), zinc (Zn), mercury (Hg), organophosphorus pesticides (OCP), organophosphorus pesticides (OCP), organophosphorus pesticides (OCP), organophosphorus pesticides (OCP), benzene, toluene, ethylbenzene, xylenes and naphthalene (BTEXN) 202 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN 203 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN 204 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN 205 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN 206 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN 207 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN 207 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, North of heritage cottage	140	Soil	OCP	Collected from Lot 90
143 Soil OCP Collected from Lot 90 144 Soil OCP Collected from Lot 90 145 Soil OCP Collected from Lot 90 146 Soil OCP Collected from Lot 90 147 Soil OCP Collected from Lot 90 148 Soil OCP Collected from Lot 90 148 Soil OCP Collected from Lot 90 149 Soil OCP Collected from Lot 90 140 Soil OCP Collected from Lot 90 141 Soil OCP Collected from Lot 90 140 Soil Arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), nickel (Ni), zinc (Zn), mercury (Hg), organophosphorus pesticides (OPP), organophosphorus pesticides (OPP), organophosphorus pesticides (OPP), total recoverable hydrocarbons (TRH C6-C40), benzene, toluene, ethylenzene, xylenes and naphthalene (BTEXN) 100 As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN 101 As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN 102 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN 103 As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN 104 As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN 105 As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN 105 As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN 105 As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN 105 As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN 105 As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, North of heritage cottage 105 As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, North of dwelling	141	Soil	OCP	Collected from Lot 90
144 Soil OCP Collected from Lot 90 145 Soil OCP Collected from Lot 90 146 Soil OCP Collected from Lot 90 147 Soil OCP Collected from Lot 90 148 Soil OCP Collected from Lot 90 201 Soil Arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), nickel (Ni), zinc (Zn), mercury (Hg), organochlorine pesticides (OCP), organophosphorus pesticides (OCP), organophosphorus pesticides (OPP), total recoverable hydrocarbons (TRH C6-C40), benzene, tolluene, ethylbenzene, xylenes and naphthalene (BTEXN) 202 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN 203 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, Southern side of large shed TRH C6-C40, BTEXN 204 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN 205 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, Approximate location of former shed as identified in TRH C6-C40, BTEXN 206 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN 207 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, North of heritage cottage TRH C6-C40, BTEXN 207 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, North of dwelling	142	Soil	OCP	Collected from Lot 90
145 Soil OCP Collected from Lot 90 146 Soil OCP Collected from Lot 90 147 Soil OCP Collected from Lot 90 148 Soil OCP Collected from Lot 90 201 Soil Arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), nickel (Ni), zinc (Zn), mercury (Hg), organochlorine pesticides (OCP), organophosphorus pesticides (OCP), total recoverable hydrocarbons (TRH C6-C40), benzene, toluene, ethylbenzene, xylenes and naphthalene (BTEXN) 202 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN 203 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN 204 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN 205 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN 206 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN 207 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, North of heritage cottage 186 TRH C6-C40, BTEXN 207 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, North of dwelling	143	Soil	OCP	Collected from Lot 90
146 Soil OCP Collected from Lot 90 147 Soil OCP Collected from Lot 90 148 Soil OCP Collected from Lot 90 201 Soil Arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), nickel (Ni), zinc (Zn), mercury (Hg), organochlorine pesticides (OCP), organophosphorus pesticides (OCP), organophosphorus pesticides (OPP), total recoverable hydrocarbons (TRH C6-C40), benzene, toluene, ethylbenzene, xylenes and naphthalene (BTEXN) 202 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN 203 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, Southern side of large shed 104 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN 205 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN 206 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN 207 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN 208 North of dwelling to the west 1954 aerial photograph North of heritage cottage North of dwelling	144	Soil	OCP	Collected from Lot 90
147 Soil OCP Collected from Lot 90 148 Soil OCP Collected from Lot 90 201 Soil Arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), nickel (Ni), zinc (Zn), mercury (Hg), organochlorine pesticides (OCP), organophosphorus pesticides (OCP), organophosphorus pesticides (OPP), total recoverable hydrocarbons (TRH C6-C40), benzene, toluene, ethylbenzene, xylenes and naphthalene (BTEXN) 202 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN 203 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN 204 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN 205 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN 206 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN 207 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN 208 As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN 209 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN 209 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN 209 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, North of heritage cottage	145	Soil	OCP	Collected from Lot 90
148 Soil OCP Collected from Lot 90 201 Soil Arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), nickel (Ni), zinc (Zn), mercury (Hg), organochlorine pesticides (OCP), organophosphorus pesticides (OPP), total recoverable hydrocarbons (TRH C6-C40), benzene, toluene, ethylbenzene, xylenes and naphthalene (BTEXN) 202 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN 203 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, Southern side of shed 204 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN 205 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, Adjacent dwelling to the west 206 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN 207 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN 208 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN 209 North of heritage cottage	146	Soil	OCP	Collected from Lot 90
201 Soil Arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), nickel (Ni), zinc (Zn), mercury (Hg), organochlorine pesticides (OCP), organophosphorus pesticides (OPP), total recoverable hydrocarbons (TRH C6-C40), benzene, tolluene, ethylbenzene, xylenes and naphthalene (BTEXN) 202 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN 203 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN 204 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN 205 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN 206 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN 207 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN 208 North of heritage cottage	147	Soil	OCP	Collected from Lot 90
copper (Cu), lead (Pb), nickel (Ni), zinc (Zn), mercury (Hg), organochlorine pesticides (OCP), organophosphorus pesticides (OCP), organophosphorus pesticides (OPP), total recoverable hydrocarbons (TRH C6-C40), benzene, toluene, ethylbenzene, xylenes and naphthalene (BTEXN) 202 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, Southern side of large shed TRH C6-C40, BTEXN 203 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, Southern side of shed TRH C6-C40, BTEXN 204 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, Adjacent dwelling to the west TRH C6-C40, BTEXN 205 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, Approximate location of former shed as identified in TRH C6-C40, BTEXN 206 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, North of heritage cottage TRH C6-C40, BTEXN 207 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, North of dwelling	148	Soil	OCP	Collected from Lot 90
202 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, Southern side of large shed TRH C6-C40, BTEXN 203 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, Southern side of shed TRH C6-C40, BTEXN 204 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, Adjacent dwelling to the west TRH C6-C40, BTEXN 205 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, Approximate location of former shed as identified in TRH C6-C40, BTEXN 1954 aerial photograph 206 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, North of heritage cottage TRH C6-C40, BTEXN 207 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, North of dwelling	201	Soil	copper (Cu), lead (Pb), nickel (Ni), zinc (Zn), mercury (Hg), organochlorine pesticides (OCP), organophosphorus pesticides (OPP), total recoverable hydrocarbons (TRH C6-C40), benzene, toluene, ethylbenzene, xylenes and	West of dwelling
TRH C6-C40, BTEXN As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, North of heritage cottage TRH C6-C40, BTEXN As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, North of dwelling			As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, TRH C6-C40, BTEXN	Southern side of large shed
204 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, Adjacent dwelling to the west TRH C6-C40, BTEXN 205 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, Approximate location of former shed as identified in TRH C6-C40, BTEXN 1954 aerial photograph 206 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, North of heritage cottage TRH C6-C40, BTEXN 207 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, North of dwelling	203	Soil		Southern side of shed
205 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, Approximate location of former shed as identified in TRH C6-C40, BTEXN 1954 aerial photograph 206 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, North of heritage cottage TRH C6-C40, BTEXN 207 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, North of dwelling	204	Soil	As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP,	Adjacent dwelling to the west
206 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, North of heritage cottage TRH C6-C40, BTEXN 207 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, North of dwelling	205	Soil	As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP,	
207 Soil As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP, North of dwelling	206	Soil	As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP,	
	207	Soil	As, Cd, Cr, Cu, Pb, Ni, Zn, Hg, OCP, OPP,	North of dwelling

Chain of Custody Form – Ref 8543 Sheet 1 of 6 Ref: 8543 Investigator: **Envirowest Consulting** Sample matrix Sample preservation 9 Cameron Place **Analysis** PO Box 8158 **ORANGE NSW 2800** Telephone: (02) 6361 4954 **SGS Method Code** Facsimile: (02) 6360 3960 claire@envirowest.net.au Email: Claire McQueeney CL2 CL5 OCP OPP Contact Person: accounts@envirowest.net.au Invoice: SGS SYDNEY Sludge HNO3/H Laboratory: Water Soil Cool Unpre-16/33 Maddox Street C served TRH (C6-C40)/ BTEXN . **ALEXANDRIA NSW 2015 OC Pesticides** OP Pesticides Quotation #: 8 Metals Courier/CN: Sample ID Container* Sampling Date/Time 27/07/2017 X A X X X 27/07/2017 2 X X X X A 27/07/2017 X A X X X 27/07/2017 X A X X X SGS EHS Alexandria Laboratory 27/07/2017 X X X X A 27/07/2017 Χ X Χ Χ A 27/07/2017 X X X X A 28/07/2017 X X X X A A 28/07/2017 Χ Χ X X 28/07/2017 10 X X X Received: 04 - Aug - 2017 A X 11 28/07/2017 X X X X A 28/07/2017 12 A Χ X Χ Investigator: I attest that the proper field sampling procedures were used during the Sampler name: Claire McQueeney collection of these samples. Date: 27 and 28/07/2017 Relinquished by: Claire McQueeney Date 03/08/2017 Time Time Received by: (print and signature) 11:20 (print and signature) 17:00

Please return completed form to Envirowest Consulting, *A = Solvent rinsed glass jar with Teflon lined lid and green label

C/P 15.9.

Ref:	8543			9.000									
Investigator:	Envirowest Co	nsulting											
	9 Cameron Pla	ace	Sa	ımple matı	rix	Samp	le preserva	ation			Analysis		
	PO Box 8158							- 1			Allalysis		
	ORANGE NSV												
Telephone:	(02) 6361 4954							<u> </u>					
Facsimile:	(02) 6360 3960							L		S	GS Method C	ode	
Email:	claire@envirov												
Contact Person:	Claire McQuee								CL2	CL5	OCP	OPP	
Invoice:	accounts@env												
Laboratory:	SGS SYDNEY		Water	Soil	Sludge	Cool	HNO3/	Unpre-					
	16/33 Maddox						HCI	served					
	ALEXANDRIA	NSW 2015								6	g	S	
Quotation #:										2	Pesticides	ig	
Courier/CN:									tals	9 z	esti	sstic	
Sample ID	Container*	Sampling Date/Time							8 Metals	TRH (C6-C40)/ BTEXN	00 P	OP Pesticides	
101	Α	27/07/2017		X		Х		Х			X		
102	A	27/07/2017		X		X		X			X		
103	l A	27/07/2017		X		X		X			X		· · · · · · · · · · · · · · · · · · ·
104	A	27/07/2017		X		X		X	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1	X	-d-1	
105	A	27/07/2017		X		X		X		1	X		
106	l A	27/07/2017		Χ		Χ		X			X		
107	A	27/07/2017		X		Χ	-	X			X		en control de la control de
108	A	27/07/2017		X		X		X			X		
109	A	27/07/2017		X		X		X			X		
110	A	27/07/2017		X		X	-	X			X		
444	·•• · · · · · · · · · · · · · · · · · ·	27/07/2017		X		X		$\frac{1}{x}$			X		
111	Α	2110112011	1	^	1	^		A 1			. A :		

Sampler name: Claire McQueeney Date: 12-1-2017

Time:

Date, Time //: 7

Received by:
(print and signature) Please return completed form to Envirowest Consulting, *A = Solvent rinsed glass jar with Teflon lined lid and green label

Date 16-1-2017

Time 17:00

Investigator: I attest that the proper field sampling procedures were used during the

Claire McQueeney

collection of these samples.

Relinquished by: (print and signature)

PO Box 8158 ORANGE NSW 2 (02) 6361 4954 (02) 6360 3960	Э	Sa	mple mat	rix	Sam	ınle nresen:	. 1					
(02) 6361 4954 (02) 6360 3960	2800		9 Cameron Place Sample matrix			Sample preservation			Analysis			
(02) 6360 3960							- 1					
		1					_					
							L		S	3S Method C	ode	
claire@envirowe							1					
							1	CL2	CL5	OCP	OPP	
	owest.net.au			1 200		- 2075AW-967AW-97						
16/33 Maddox St		Water	Soil	Sludge	Cool	HNO3/H CI	Unpre- served		/(0)/	88	SS	
								etals	(C6-C4 XN	esticide	esticide	
Container*	Sampling Date/Time							δ 8	TRH BTE	900 F	90	
A	27/07/2017		Χ		Χ		X			Χ		
A	27/07/2017		Χ		Χ		X			Χ		
A [27/07/2017		Χ		Χ		X					
A [27/07/2017		Χ		Χ		Х			Χ		
A	27/07/2017		Χ		Χ		X			Χ		
A	27/07/2017		Χ		Χ		X			Χ		
A	27/07/2017		Χ		Χ					X	***************************************	OMERICA DESCRIPTION AND ADDRESS OF THE PERSONS ASSESSMENT OF THE PERSO
A	27/07/2017		Χ		Χ		Χ			Χ		***************************************
A	27/07/2017		Χ		Χ		Χ			Χ		
Α	27/07/2017		Χ		Χ		X			X		
			V		Χ		X			X		
A	27/07/2017		Χ		Χ		Х			X		
	Claire McQueenaccounts@environgenviron	Claire McQueeney accounts@envirowest.net.au SGS SYDNEY 16/33 Maddox Street ALEXANDRIA NSW 2015 Container* Sampling Date/Time A 27/07/2017	Claire McQueeney accounts@envirowest.net.au SGS SYDNEY 16/33 Maddox Street ALEXANDRIA NSW 2015 Container* Sampling Date/Time A 27/07/2017	Claire McQueeney accounts@envirowest.net.au SGS SYDNEY 16/33 Maddox Street ALEXANDRIA NSW 2015 Water Soil Container* Sampling Date/Time A 27/07/2017 X A 27/07/2017 X	Claire McQueeney accounts@envirowest.net.au SGS SYDNEY 16/33 Maddox Street ALEXANDRIA NSW 2015 Water Soil Sludge A 27/07/2015 X X A 27/07/2017 X X X	Claire McQueeney accounts@envirowest.net.au SGS SYDNEY 16/33 Maddox Street ALEXANDRIA NSW 2015 Water Soil Sludge Cool A 27/07/2017 A 27/07/2017 A 27/07/2017 A 37/07/2017 A	Claire McQueeney accounts@envirowest.net.au Water Soil Sludge Cool HNO3/H Cl 16/33 Maddox Street ALEXANDRIA NSW 2015 Water Soil Sludge Cool HNO3/H Cl A 27/07/2017 ALEXANDRIA NSW 2015 X X X A 27/07/2017 ALEXANDRIA NSW 2015 X X X	Claire McQueeney accounts@envirowest.net.au	Claire McQueeney accounts@envirowest.net.au SGS SYDNEY 16/33 Maddox Street ALEXANDRIA NSW 2015 Water Soil Sludge Cool HNO3/H CI served Unpreserved A 27/07/2017 A 27/07/2017 A 27/07/2017 A 3 27/07/2017 A 3 3 27/07/2017 A 3 3 27/07/2017 A 3 3 27/07/2017 A 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Claire McQueeney accounts@envirowest.net.au	Claire McQueeney accounts@envirowest.net.au	Claire McQueeney accounts@envirowest.net.au

Ref:	8543			-									_
nvestigator:	Envirowest Cons	sulting				1000							
	9 Cameron Place	Э	Sa	mple mat	rix	Sam	ple preserva	ation			Analysis		
	PO Box 8158										Analysis		
	ORANGE NSW:	2800											
elephone:	(02) 6361 4954		1										
acsimile:	(02) 6360 3960									S	GS Method C	ode	
mail:	claire@envirowe	st.net.au	1										
Contact Person:	Claire McQueen								CL2	CL5	OCP	OPP	
nvoice:	accounts@enviro										33.		
aboratory:	SGS SYDNEY		Water	Soil	Sludge	Cool	HNO3/H	Unpre-					_
•	16/33 Maddox St	treet	1		l change		CI	served			1 1		
	ALEXANDRIA N	SW 2015								7	ω	(0	
Quotation #:										C4(99	OP Pesticides	
Courier/CN:			1				1		38	90 -	Pesticides	stic	
Sample ID	Container*	Sampling	-						Metals		&	Pe	
ample ID	Container	Date/Time							8	TRH (C6-C40)/ BTEXN	8	용	
25	A	27/07/2017		Χ		Х		Х			X		_
26	A	27/07/2017		X		X		X			X		,,,,,,,,,
27	Α	27/07/2017		Χ		X		X			Χ		
28	A	27/07/2017		Χ		X		X			Χ	***************************************	
29	Α	27/07/2017		Χ		X		X			X		
30	A	27/07/2017		Χ		X		X			X		,,,,,,,,,,,
31	Α	27/07/2017		Χ		X	***************************************	X			X		
32	A	27/07/2017		Χ		Χ		X			X		
33	_ A	27/07/2017		Χ		Χ		Χ			Χ		**********
34	A	27/07/2017		Χ		Χ		X	***************************************		X		.000000
35	A	27/07/2017		Χ		Χ		X			X		
36	A	27/07/2017		Χ		Х		X			Χ		
ollection of these	samples.	ld sampling procedu	ires were used	d during th	е	Sampler r Date: 27/		McQueeney	Time	9 :			
elinquished by: rint and signature)	Claire Mo	Queeney	Date 03/08/2	017	Time	Received		20000	D	ate Ti	me // 76)	
int and signature)	11/1	1			17:00	(print and sig	maiure)	12/	5	46/12	11:26	y .	

Chain of Custody Form - Ref 8543 Sheet 5 of 6 Ref: 8543 **Envirowest Consulting** Investigator: Sample matrix Sample preservation 9 Cameron Place **Analysis** PO Box 8158 **ORANGE NSW 2800** Telephone: (02) 6361 4954 **SGS Method Code** Facsimile: (02) 6360 3960 Email: claire@envirowest.net.au Contact Person: Claire McQueeney CL5 OPP CL2 OCP Invoice: accounts@envirowest.net.au Laboratory: SGS SYDNEY Water Soil Sludge HNO3/H Cool Unpre-16/33 Maddox Street CI served TRH (C6-C40)/ BTEXN **ALEXANDRIA NSW 2015** OC Pesticides OP Pesticides Quotation #: 8 Metals Courier/CN: Sample ID Container* Sampling Date/Time 137 27/07/2017 Α X X X Χ 150 138 27/07/2017 A X X X Χ 139 27/07/2017 X Α X X X 140 27/07/2017 2555 A X X X Χ 141 27/07/2017 A X X X X 142 27/07/2017 A X X X Χ 143 27/07/2017 A X X X X 144 27/07/2017 A X X Χ X 145 27/07/2017 Χ A X X X 146 27/07/2017 A X X X Χ 147 27/07/2017 A X X Χ Χ 148 27/07/2017 A X X X Χ

	Investigator: I attest the collection of these sar	nat the proper field sampling pro mples.	ocedures were used during	the	Sampler name: Claire McQueeney Date: 27/07/2017	Time:		
	Relinquished by: (print and signature)	Claire McQueeney	Date 03/08/2017	Time 17:00	Received by: (print and signature)	Date	Time //: 70	
Ple	ase return completed fo	rm to Envirowest Consulting, *A	A = Solvent rinsed glass jar	with Teflon li	ned lid and green label	18/1	/	

Chain of Custody Form - Ref 8543 Sheet 6 of 6 8543 Ref: Investigator: **Envirowest Consulting** Sample matrix Sample preservation 9 Cameron Place **Analysis** PO Box 8158 **ORANGE NSW 2800** Telephone: (02) 6361 4954 SGS Method Code Facsimile: (02) 6360 3960 claire@envirowest.net.au Email: Contact Person: Claire McQueeney CL₂ CL5 OPP OCP accounts@envirowest.net.au Invoice: SGS SYDNEY Laboratory: Water Soil HNO3/H Sludge Cool Unpre-16/33 Maddox Street CI served TRH (C6-C40)/ BTEXN ALEXANDRIA NSW 2015 OC Pesticides OP Pesticides Quotation #: 8 Metals Courier/CN: Sample ID Container* Sampling Date/Time 201 28/07/2017 Α Χ X Χ X X Χ Χ 202 28/07/2017 A X X X X X X 203 28/07/2017 X X Χ A X X X X 204 28/07/2017 A X X X X X Χ Χ 205 28/07/2017 X Χ A X X X X X 206 28/07/2017 X A X X X X Χ 207 A 28/07/2017 X X X X Χ DA 27/07/2017 Α X X Χ X X Χ X DB 28/07/2017 A X X X X X X Χ 70 DC 28/07/2017 A X X X X X X Χ

Investigator: I attest that the proper field sampling procedures were used during the collection of these samples.

Relinquished by: Claire McQueeney Date 03/08/2017 Time (print and signature)

Claire McQueeney Date 03/08/2017 Time (print and signature)

Received by: (print and signature)

Date Time (print and signature)

Please return completed form to Envirowest Consulting, *A = Solvent rinsed glass jar with Teflon lined lid and green label

.

ANALYTICAL REPORT

CLIENT DETAILS -

LABORATORY DETAILS

Claire McQueeney Contact

ENVIROWEST CONSULTING PTY LIMITED Client

Address PO BOX 8158

ORANGE NSW 2800

Huong Crawford Manager

SGS Alexandria Environmental Laboratory

Address Unit 16, 33 Maddox St

Alexandria NSW 2015

61 2 63614954 Telephone

Facsimile (Not specified) Email

8543

8543

70

claire@envirowest.net.au

+61 2 8594 0400 Telephone Facsimile +61 2 8594 0499

Email au.environmental.sydney@sgs.com

SGS Reference SE168770 R0 Date Received 4/8/2017 14/8/2017 Date Reported

COMMENTS

Order Number

Project

Samples

Accredited for compliance with ISO/IEC 17025-Testing. NATA accredited laboratory 2562(4354).

SIGNATORIES

Akheeqar Beniameen

Chemist

Dong Liang

Metals/Inorganics Team Leader

Huong Crawford

Production Manager

Kamrul Ahsan Senior Chemist

Teresa Nguyen

Organic Chemist

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC

Alexandria NSW 2015 Alexandria NSW 2015

Australia Australia t +61 2 8594 0400 f +61 2 8594 0499 www.sgs.com.au

Member of the SGS Group

SE168770 R0

VOC's in Soil [AN433] Tested: 8/8/2017

			201	202	203	204	205
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 28/7/2017			28/7/2017	- 28/7/2017
PARAMETER	UOM	LOR	SE168770.061	SE168770.062	SE168770.063	SE168770.064	SE168770.065
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			206	207	DA	DB	DC
			SOIL	SOIL	SOIL	SOIL	SOIL
			28/7/2017	28/7/2017	28/7/2017	28/7/2017	28/7/2017
PARAMETER	UOM	LOR	SE168770.066	SE168770.067	SE168770.068	SE168770.069	SE168770.070
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

14/08/2017 Page 2 of 24

SE168770 R0

Volatile Petroleum Hydrocarbons in Soil [AN433] Tested: 8/8/2017

			201	202	203	204	205
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 28/7/2017	- 28/7/2017	- 28/7/2017	- 28/7/2017	- 28/7/2017
PARAMETER	UOM	LOR	SE168770.061	SE168770.062	SE168770.063	SE168770.064	SE168770.065
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			206	207	DA	DB	DC
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
PARAMETER	UOM	LOR	28/7/2017 SE168770.066	28/7/2017 SE168770.067	28/7/2017 SE168770.068	28/7/2017 SE168770.069	28/7/2017 SE168770.070
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

14/08/2017 Page 3 of 24

SGS

ANALYTICAL RESULTS

TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 8/8/2017

			201	202	203	204	205
			SOIL	SOIL	SOIL	SOIL	SOIL
			28/7/2017	28/7/2017	28/7/2017	28/7/2017	28/7/2017
PARAMETER	UOM	LOR	SE168770.061	SE168770.062	SE168770.063	SE168770.064	SE168770.065
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	48
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16 (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH C10-C40 Total	mg/kg	210	<210	<210	<210	<210	<210

			206	207	DA	DB	DC
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 28/7/2017	- 28/7/2017	- 28/7/2017	- 28/7/2017	- 28/7/2017
PARAMETER	UOM	LOR	SE168770.066	SE168770.067	SE168770.068	SE168770.069	SE168770.070
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	55	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16 (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH C10-C40 Total	mg/kg	210	<210	<210	<210	<210	<210

14/08/2017 Page 4 of 24

OC Pesticides in Soil [AN420] Tested: 8/8/2017

			101	102	103	104	105
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	27/7/2017 SE168770.013	27/7/2017 SE168770.014	27/7/2017 SE168770.015	27/7/2017 SE168770.016	27/7/2017 SE168770.017
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1	<1	<1

14/08/2017 Page 5 of 24

OC Pesticides in Soil [AN420] Tested: 8/8/2017 (continued)

			100				
			106	107	108	109	110
			SOIL	SOIL	SOIL	SOIL	SOIL
			27/7/2017			27/7/2017	27/7/2017
PARAMETER	UOM	LOR	SE168770.018	SE168770.019	SE168770.020	SE168770.021	SE168770.022
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1	<1	<1
*******	59				<u> </u>	1	1

14/08/2017 Page 6 of 24

OC Pesticides in Soil [AN420] Tested: 8/8/2017 (continued)

	_	_	111	112	113	114	115
					""		110
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 27/7/2017	- 27/7/2017	- 27/7/2017	- 27/7/2017	- 27/7/2017
PARAMETER	UOM	LOR	SE168770.023	SE168770.024	SE168770.025	SE168770.026	SE168770.027
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1	<1	<1

14/08/2017 Page 7 of 24

OC Pesticides in Soil [AN420] Tested: 8/8/2017 (continued)

			116	117	118	119	120
			SOIL	SOIL	SOIL	SOIL	SOIL
			27/7/2017			27/7/2017	27/7/2017
PARAMETER	UOM	LOR	SE168770.028	SE168770.029	SE168770.030	SE168770.031	SE168770.032
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1	<1	<1

14/08/2017 Page 8 of 24

OC Pesticides in Soil [AN420] Tested: 8/8/2017 (continued)

PARAMETER UOM LOR SELESTTO 0.35 SOIL SO								
PARAMETER 100				121	122	123	124	125
PARAMETER 100				SOII	SOII	SOII	SOIL	SOIL
No. No. No. Selestro.035 Selestro.036 Selestro.036 Selestro.037 S						-	-	-
Helpachforoberzene (HCB)				27/7/2017			27/7/2017	27/7/2017
Alpha BHC mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	PARAMETER	UOM	LOR	SE168770.033	SE168770.034	SE168770.035	SE168770.036	SE168770.037
Lindane mg/kg 0.1	Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Helpischlor mg/kg 0.1 40.1 40.1 40.1 40.1 40.1 40.1 40.1	Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin mg/kg 0.1	Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.2 <td>Beta BHC</td> <td>mg/kg</td> <td>0.1</td> <td><0.1</td> <td><0.1</td> <td><0.1</td> <td><0.1</td> <td><0.1</td>	Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
op-DDE mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan mg/kg 0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Gamma Chlordane mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane Mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
trans-Nonachlor mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pi-DE Mg/kg 0.1 0.1 0.2 0.1 0.2 0.3	Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin mg/kg 0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.	trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin mg/kg 0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	p,p'-DDE	mg/kg	0.1	0.1	0.2	0.1	0.2	0.3
o,p'-DDD mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
ο,ρ-DDT mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Beta Endosulfan mg/kg 0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDD mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Endosulfan sulphate mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 </td <td>p,p'-DDD</td> <td>mg/kg</td> <td>0.1</td> <td><0.1</td> <td><0.1</td> <td><0.1</td> <td><0.1</td> <td><0.1</td>	p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Isodrin		0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Total CLP OC Pesticides	mg/kg						

14/08/2017 Page 9 of 24

SE168770 R0

OC Pesticides in Soil [AN420] Tested: 8/8/2017 (continued)

No.				126	127	128	129	130
PARAMETER UOM LOR SE169770.030 22772017 SE169770.030 22772017 SE169770.040 22772017 SE1				120	127	120	129	130
PARAMETER UNI LOR \$27772017				SOIL	SOIL	SOIL	SOIL	SOIL
PRAMETER UOM USR SE168770.050 SE168770.041 SE168770.041 SE168770.041 COLD Headchlorobenzene (HS) mg/kg 0.1 <0.1								
Petanthirotherazena (HCB)	PARAMETER	HOM	LOR					
Alpha BHC mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1								
Lindane mpkg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <	<u> </u>							
Heptachlor mg/kg 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	<u> </u>							
Aldrin mylkg 0.1 -0.1 <								
Beta BHC mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	· ·							
Delta BHC mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1								
Heptachlor epoxide mg/kg 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 <					-		-	-
ορ'-DDE mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Heptachlor epoxide		0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alþa Endosulfan mg/kg 0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<u> </u>		0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Gamma Chlordane mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
trans-Nonachlor mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p.p'-DDE mg/kg 0.1 0.1 0.5 0.5 0.4 0.1 Dieldrin mg/kg 0.2 <0.2	Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin mg/kg 0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin mg/kg 0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	p,p'-DDE	mg/kg	0.1	0.1	0.5	0.5	0.4	0.1
o.p'-DDD mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Dieldrin	mg/kg	0.2	<0.2	<0.2		<0.2	<0.2
Op-DDT mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <	Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Beta Endosulfan mg/kg 0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDD mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p-DDT mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Endosulfan sulphate mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides mg/kg 1 <1 <1 <1 <1 <1	Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Total CLP OC Pesticides	mg/kg	1	<1	<1	<1	<1	<1

14/08/2017 Page 10 of 24

OC Pesticides in Soil [AN420] Tested: 8/8/2017 (continued)

			131	132	133	134	135
			131	132	133	134	135
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	27/7/2017 SE168770.043	27/7/2017 SE168770.044	27/7/2017 SE168770.045	27/7/2017 SE168770.046	27/7/2017 SE168770.047
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	0.2	0.4	0.1	0.3	0.5
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.1	<0.2	<0.2	<0.1	<0.1	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate		0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
<u>_</u>	mg/kg						<0.1
Methoxychlor Estatio Methox	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1	<1	<1

14/08/2017 Page 11 of 24

SE168770 R0

OC Pesticides in Soil [AN420] Tested: 8/8/2017 (continued)

			136	137	138	139	140
			130	157	130	133	170
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 27/7/2017	- 27/7/2017	- 27/7/2017	- 27/7/2017	- 27/7/2017
PARAMETER	UOM	LOR	SE168770.048	SE168770.049	SE168770.050	SE168770.051	SE168770.052
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	0.1	0.2	<0.1	0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1	<1	<1

14/08/2017 Page 12 of 24

OC Pesticides in Soil [AN420] Tested: 8/8/2017 (continued)

			_				
			141	142	143	144	145
			SOIL	SOIL	2011	201	2011
			SOIL -	50IL -	SOIL -	SOIL -	SOIL -
			27/7/2017			27/7/2017	27/7/2017
PARAMETER	UOM	LOR	SE168770.053	SE168770.054	SE168770.055	SE168770.056	SE168770.057
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	0.1	<0.1	0.5	0.4	0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1	<1	<1

14/08/2017 Page 13 of 24

OC Pesticides in Soil [AN420] Tested: 8/8/2017 (continued)

			_				
			146	147	148	201	202
			201	001	001	0011	0011
			SOIL -	SOIL -	SOIL -	SOIL -	SOIL -
			27/7/2017			28/7/2017	28/7/2017
PARAMETER	UOM	LOR	SE168770.058	SE168770.059	SE168770.060	SE168770.061	SE168770.062
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	0.2	0.1	0.4	0.8	0.8
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	0.2	0.2
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1	<1	<1

14/08/2017 Page 14 of 24

SE168770 R0

OC Pesticides in Soil [AN420] Tested: 8/8/2017 (continued)

			203	204	205	206	207
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
			28/7/2017			28/7/2017	28/7/2017
PARAMETER	UOM	LOR	SE168770.063	SE168770.064	SE168770.065	SE168770.066	SE168770.067
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	0.3	0.2	<0.1	<0.1	0.3
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1	<1	<1

14/08/2017 Page 15 of 24

SGS

ANALYTICAL RESULTS

OC Pesticides in Soil [AN420] Tested: 8/8/2017 (continued)

			DA	DB	DC
			SOIL	SOIL	SOIL
			- 28/7/2017	- 28/7/2017	- 28/7/2017
PARAMETER	UOM	LOR	SE168770.068	SE168770.069	SE168770.070
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	0.1	0.2	0.4
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1

14/08/2017 Page 16 of 24

SGS

ANALYTICAL RESULTS

OP Pesticides in Soil [AN420] Tested: 8/8/2017

			201	202	203	204	205
PARAMETER	UOM	LOR	SOIL - 28/7/2017 SE168770.061	SOIL - 28/7/2017 SE168770.062	SOIL - 28/7/2017 SE168770.063	SOIL - 28/7/2017 SE168770.064	SOIL - 28/7/2017 SE168770.065
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7	<1.7	<1.7

			206	207	DA	DB	DC
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			28/7/2017	28/7/2017	28/7/2017	28/7/2017	28/7/2017
PARAMETER	UOM	LOR	SE168770.066	SE168770.067	SE168770.068	SE168770.069	SE168770.070
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7	<1.7	<1.7

14/08/2017 Page 17 of 24

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 10/8/2017

			1	2	3	4	5
			SOIL	SOIL	SOIL	SOIL	SOIL
			27/7/2017			27/7/2017	27/7/2017
PARAMETER	UOM	LOR	SE168770.001	SE168770.002	SE168770.003	SE168770.004	SE168770.005
Arsenic, As	mg/kg	3	4	4	4	3	<3
Cadmium, Cd	mg/kg	0.3	0.3	<0.3	<0.3	<0.3	0.3
Chromium, Cr	mg/kg	0.3	36	51	110	55	68
Copper, Cu	mg/kg	0.5	14	16	22	18	20
Lead, Pb	mg/kg	1	18	17	16	17	13
Nickel, Ni	mg/kg	0.5	8.8	8.3	12	12	14
Zinc, Zn	mg/kg	0.5	19	22	25	32	48

			6	7	8	9	10
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	- 27/7/2017 SE168770.006	- 27/7/2017 SE168770.007	- 27/7/2017 SE168770.008	- 27/7/2017 SE168770.009	- 27/7/2017 SE168770.010
Arsenic, As	mg/kg	3	<3	<3	3	<3	<3
Cadmium, Cd	mg/kg	0.3	0.3	0.4	0.4	0.3	<0.3
Chromium, Cr	mg/kg	0.3	83	110	71	89	72
Copper, Cu	mg/kg	0.5	37	40	54	32	31
Lead, Pb	mg/kg	1	13	16	24	14	20
Nickel, Ni	mg/kg	0.5	16	17	16	14	14
Zinc, Zn	mg/kg	0.5	60	78	91	51	53

			11	12	201	202	203
			SOIL	SOIL	SOIL	SOIL	SOIL
			27/7/2017		28/7/2017	28/7/2017	28/7/2017
PARAMETER	UOM	LOR	SE168770.011	SE168770.012	SE168770.061	SE168770.062	SE168770.063
Arsenic, As	mg/kg	3	3	<3	5	4	3
Cadmium, Cd	mg/kg	0.3	0.3	<0.3	0.8	0.7	0.4
Chromium, Cr	mg/kg	0.3	81	40	120	120	73
Copper, Cu	mg/kg	0.5	42	36	66	120	51
Lead, Pb	mg/kg	1	14	12	66	37	17
Nickel, Ni	mg/kg	0.5	14	10	24	21	16
Zinc, Zn	mg/kg	0.5	47	35	440	200	84

							1
			204	205	206	207	DA
			SOIL	SOIL	SOIL	SOIL	SOIL
			28/7/2017			28/7/2017	28/7/2017
PARAMETER	UOM	LOR	SE168770.064	SE168770.065	SE168770.066	SE168770.067	SE168770.068
Arsenic, As	mg/kg	3	4	4	4	<3	<3
Cadmium, Cd	mg/kg	0.3	0.4	0.4	0.7	0.3	0.3
Chromium, Cr	mg/kg	0.3	99	97	97	58	85
Copper, Cu	mg/kg	0.5	56	26	34	45	41
Lead, Pb	mg/kg	1	27	26	62	30	14
Nickel, Ni	mg/kg	0.5	20	19	21	14	18
Zinc, Zn	mg/kg	0.5	310	100	430	95	67

14/08/2017 Page 18 of 24

SE168770 R0

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 10/8/2017 (continued)

			DB	DC
			SOIL	SOIL
			- 28/7/2017	- 28/7/2017
PARAMETER	UOM	LOR	SE168770.069	SE168770.070
Arsenic, As	mg/kg	3	<3	<3
Cadmium, Cd	mg/kg	0.3	0.3	0.3
Chromium, Cr	mg/kg	0.3	74	64
Copper, Cu	mg/kg	0.5	38	47
Lead, Pb	mg/kg	1	14	12
Nickel, Ni	mg/kg	0.5	15	12
Zinc, Zn	mg/kg	0.5	48	41

14/08/2017 Page 19 of 24

Mercury in Soil [AN312] Tested: 10/8/2017

			1	2	3	4	5
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			27/7/2017			27/7/2017	27/7/2017
PARAMETER	UOM	LOR	SE168770.001	SE168770.002	SE168770.003	SE168770.004	SE168770.005
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			6	7	8	9	10
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			27/7/2017			27/7/2017	27/7/2017
PARAMETER	UOM	LOR	SE168770.006	SE168770.007	SE168770.008	SE168770.009	SE168770.010
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			11	12	201	202	203
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			27/7/2017			28/7/2017	28/7/2017
PARAMETER	UOM	LOR	SE168770.011	SE168770.012	SE168770.061	SE168770.062	SE168770.063
Mercury	mg/kg	0.05	<0.05	<0.05	0.09	0.14	<0.05

			204	205	206	207	DA
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			28/7/2017			28/7/2017	28/7/2017
PARAMETER	UOM	LOR	SE168770.064	SE168770.065	SE168770.066	SE168770.067	SE168770.068
Mercury	mg/kg	0.05	<0.05	<0.05	0.06	<0.05	<0.05

			DB	DC
			SOIL	SOIL
				-
			28/7/2017	28/7/2017
PARAMETER	UOM	LOR	SE168770.069	SE168770.070
Mercury	mg/kg	0.05	<0.05	<0.05

14/08/2017 Page 20 of 24

PARAMETER

% Moisture

ANALYTICAL RESULTS

Moisture Content [AN002] Tested: 10/8/2017

			1	2	3	4	5
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 27/7/2017	- 27/7/2017	- 27/7/2017	- 27/7/2017	- 27/7/2017
PARAMETER	UOM	LOR	SE168770.001	SE168770.002	SE168770.003	SE168770.004	SE168770.005
% Moisture	%w/w	0.5	9.0	13	11	13	14
			6	7	8	9	10
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 27/7/2017			- 27/7/2017	- 27/7/2017
PARAMETER	UOM	LOR	SE168770.006	SE168770.007	SE168770.008	SE168770.009	SE168770.010
% Moisture	%w/w	0.5	16	26	16	19	20
			11	12	101	102	103
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 27/7/2017	- 27/7/2017	- 27/7/2017	- 27/7/2017	- 27/7/2017
PARAMETER	UOM	LOR	SE168770.011	SE168770.012	SE168770.013	SE168770.014	SE168770.015
% Moisture	%w/w	0.5	18	21	8.8	9.3	8.5
			104	105	106	107	108
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 27/7/2017	- 27/7/2017	- 27/7/2017	- 27/7/2017	- 27/7/2017
PARAMETER	UOM	LOR	SE168770.016	SE168770.017	SE168770.018	SE168770.019	SE168770.020
% Moisture	%w/w	0.5	16	14	14	9.3	13
			109	110	111	112	113
			2011	5011	5011	5011	SOIL
			SOIL -	SOIL -	SOIL -	SOIL -	SOIL -
PARAMETER	UOM	LOR	27/7/2017	27/7/2017	27/7/2017 SE168770.023	27/7/2017 SE168770.024	27/7/2017 SE168770.025
% Moisture	%w/w	0.5	SE168770.021	SE168770.022 9.5	SE168770.023	8.9	9.3
,	,,,,,,,	0.0	- 11	5.5	11	0.5	5.5

			119	120	121	122	123
			SOIL	SOIL	SOIL	SOIL	SOIL
			27/7/2017			27/7/2017	27/7/2017
PARAMETER	UOM	LOR	SE168770.031	SE168770.032	SE168770.033	SE168770.034	SE168770.035
% Moisture	%w/w	0.5	17	12	15	14	16

15

12

0.5

SE168770.028

12

SE168770.029

13

14

14/08/2017 Page 21 of 24

Moisture Content [AN002] Tested: 10/8/2017 (continued)

			124	125	126	127	128
			SOIL	SOIL	SOIL	SOIL	SOIL
			27/7/2017			27/7/2017	27/7/2017
PARAMETER	UOM	LOR	SE168770.036	SE168770.037	SE168770.038	SE168770.039	SE168770.040
% Moisture	%w/w	0.5	13	19	23	17	21

			129	130	131	132	133
			SOIL	SOIL	SOIL	SOIL	SOIL
			27/7/2017			27/7/2017	27/7/2017
PARAMETER	UOM	LOR	SE168770.041	SE168770.042	SE168770.043	SE168770.044	SE168770.045
% Moisture	%w/w	0.5	15	16	12	21	20

			134	135	136	137	138
			00"	00"	00"	00"	00"
			SOIL	SOIL	SOIL	SOIL	SOIL
			27/7/2017			27/7/2017	27/7/2017
PARAMETER	UOM	LOR	SE168770.046	SE168770.047	SE168770.048	SE168770.049	SE168770.050
% Moisture	%w/w	0.5	17	19	19	16	19

			139	140	141	142	143
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			27/7/2017			27/7/2017	27/7/2017
PARAMETER	UOM	LOR	SE168770.051	SE168770.052	SE168770.053	SE168770.054	SE168770.055
% Moisture	%w/w	0.5	19	16	18	17	17

			144	145	146	147	148
			SOIL	SOIL	SOIL	SOIL	SOIL
			27/7/2017			27/7/2017	27/7/2017
PARAMETER	UOM	LOR	SE168770.056	SE168770.057	SE168770.058	SE168770.059	SE168770.060
% Moisture	%w/w	0.5	16	16	16	22	23

			201	202	203	204	205
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			28/7/2017			28/7/2017	28/7/2017
PARAMETER	UOM	LOR	SE168770.061	SE168770.062	SE168770.063	SE168770.064	SE168770.065
% Moisture	%w/w	0.5	12	18	18	17	14

			206	207	DA	DB	DC
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			28/7/2017			28/7/2017	28/7/2017
PARAMETER	UOM	LOR	SE168770.066	SE168770.067	SE168770.068	SE168770.069	SE168770.070
% Moisture	%w/w	0.5	14	9.1	16	21	20

14/08/2017 Page 22 of 24

METHOD SUMMARY

SE168770 R0

METHOD _____ METHODOLOGY SUMMARY _

AN002

The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.

AN040/AN320

A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.

AN040

A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.

AN312

Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500

AN403

Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.

AN403

Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Petroleum Hydrocarbons (TPH) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.

AN403

The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.

AN420

SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).

AN433

VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.

14/08/2017 Page 23 of 24

FOOTNOTES SE168770 R0

FOOTNOTES -

 NATA accreditation does not cover the performance of this service.

** Indicative data, theoretical holding time exceeded.

Not analysed.
 NVL Not validated.

IS Insufficient sample for analysis.

LNR Sample listed, but not received.

UOM Unit of Measure.

LOR Limit of Reporting.

↑↓ Raised/lowered Limit of

Reporting.

Samples analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here:

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx.

Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

14/08/2017 Page 24 of 24